IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v51y2000i5p473-481.html
   My bibliography  Save this article

Railway interlocking systems and Gröbner bases

Author

Listed:
  • Roanes-Lozano, Eugenio
  • Roanes-Macías, Eugenio
  • Laita, Luis M.

Abstract

Railway interlocking systems are designed to prevent conflicting actions (related to the position of switches and signals) during everyday railway exploitation. A decision model (independent from the topology of the station) based on the use of polynomial ideals and Gröbner bases is presented. This decision model can also be used to check whether a given section is accessible by a train located in another section or not. The fact that trains could occupy more than one section does not affect the model.

Suggested Citation

  • Roanes-Lozano, Eugenio & Roanes-Macías, Eugenio & Laita, Luis M., 2000. "Railway interlocking systems and Gröbner bases," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 51(5), pages 473-481.
  • Handle: RePEc:eee:matcom:v:51:y:2000:i:5:p:473-481
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475499001378
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roanes-Lozano, Eugenio & M. Laita, Luis, 1998. "An applicable topology-independent model for railway interlocking systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 45(1), pages 175-183.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roanes-Lozano, Eugenio & Hernando, Antonio & Alonso, Jose Antonio & Laita, Luis M., 2011. "A logic approach to decision taking in a railway interlocking system using Maple," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(1), pages 15-28.
    2. Xiangxian, Chen & Yulin, He & hai, Huang, 2011. "A component-based topology model for railway interlocking systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(9), pages 1892-1900.
    3. Roanes-Lozano, Eugenio & Laita, Luis M. & Roanes-Macías, Eugenio & Wester, Michael J. & Ruiz-Lozano, José Luis & Roncero, Carlos, 2009. "Evolution of railway network flexibility: The Spanish broad gauge case," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2317-2332.
    4. Roanes-Lozano, Eugenio & Roanes-Macı́as, Eugenio & Laita, Luis M., 2002. "A computer algebra approach to the design of routes and the study of their compatibility in a railway interlocking," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 58(3), pages 203-214.
    5. María Villalba-Orero & Eugenio Roanes-Lozano, 2021. "A Prototype of a Decision Support System for Equine Cardiovascular Diseases Diagnosis and Management," Mathematics, MDPI, vol. 9(20), pages 1-15, October.
    6. Zhou, Yonghua & Tao, Xin & Luan, Lei & Ning, Jingjie, 2018. "Revisiting the 7/23 train accident using computer reconstruction simulation for causation and prevention analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 148(C), pages 1-15.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangxian, Chen & Yulin, He & hai, Huang, 2011. "A component-based topology model for railway interlocking systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(9), pages 1892-1900.
    2. Roanes-Lozano, Eugenio & Laita, Luis M. & Roanes-Macías, Eugenio & Wester, Michael J. & Ruiz-Lozano, José Luis & Roncero, Carlos, 2009. "Evolution of railway network flexibility: The Spanish broad gauge case," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2317-2332.
    3. Zhou, Yonghua & Tao, Xin & Luan, Lei & Ning, Jingjie, 2018. "Revisiting the 7/23 train accident using computer reconstruction simulation for causation and prevention analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 148(C), pages 1-15.
    4. Roanes-Lozano, Eugenio & Hernando, Antonio & Alonso, Jose Antonio & Laita, Luis M., 2011. "A logic approach to decision taking in a railway interlocking system using Maple," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(1), pages 15-28.
    5. Roanes-Lozano, Eugenio & Roanes-Macı́as, Eugenio & Laita, Luis M., 2002. "A computer algebra approach to the design of routes and the study of their compatibility in a railway interlocking," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 58(3), pages 203-214.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:51:y:2000:i:5:p:473-481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.