IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v51y2000i3p387-397.html
   My bibliography  Save this article

Neural networks and simple models for the fault diagnosis of naval turbochargers

Author

Listed:
  • Pantelelis, Nikos G.
  • Kanarachos, Andreas E.
  • Gotzias, Nikos

Abstract

The present work deals with the development of simple finite element (FE) models of a turbocharger (rotor, foundation and hydrodynamic bearings) combined with neural networks and identification methods and vibration data obtained from real machines towards the automatic fault diagnosis. The development of this system is based on four sequential steps: the first is the development of simple but realistic FE models based on dynamic simulations of the complete system. The second step is the monitoring of the real turbocharger. The third step is the accurate modelling of the foundations and the excitation from the main engine, which will be done using a robust optimisation method. In the fourth step all the possible faults of the machine are identified using the artificial neural networks (ANN). In this way we can take advantage of the ANN learning capability for the real time diagnosis of potential faults. The application of the proposed system to a real naval turbocharger with vibration data obtained on working conditions show some promising results.

Suggested Citation

  • Pantelelis, Nikos G. & Kanarachos, Andreas E. & Gotzias, Nikos, 2000. "Neural networks and simple models for the fault diagnosis of naval turbochargers," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 51(3), pages 387-397.
  • Handle: RePEc:eee:matcom:v:51:y:2000:i:3:p:387-397
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475499001317
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morando, S. & Jemei, S. & Hissel, D. & Gouriveau, R. & Zerhouni, N., 2017. "ANOVA method applied to proton exchange membrane fuel cell ageing forecasting using an echo state network," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 131(C), pages 283-294.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:51:y:2000:i:3:p:387-397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.