IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v51y2000i3p257-271.html
   My bibliography  Save this article

Grouping genetic algorithms: an efficient method to solve the cell formation problem

Author

Listed:
  • De Lit, P.
  • Falkenauer, E.
  • Delchambre, A.

Abstract

The layout problem arises in a production plant during the study of a new production system, but also during a possible restructuring. The main aim of layout design is to reduce transportation and maintenance, which simplifies management, shortens lead time, improves product quality and speeds up the response to market fluctuations. A principle of Group Technology (GT) advocates the division of a unity into small groups or cells. As it is most of the time impossible to design totally independent cells, the problem is to minimise traffic of items between the cells, for a fixed maximum cell size. This problem is known as cell formation problem (CFP). We propose here an original approach to solve this NP-hard problem. It is based on a Grouping Genetic Algorithm (GGA), a special class of genetic algorithms, heavily modified to suit the structure of grouping problems. The crucial advantage of this GGA is that it is able to deal with large instances of the problem thus becoming a powerful tool for an engineer determining a plant layout, allowing him or her to try several plant options, without the limitation of huge computation times.

Suggested Citation

  • De Lit, P. & Falkenauer, E. & Delchambre, A., 2000. "Grouping genetic algorithms: an efficient method to solve the cell formation problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 51(3), pages 257-271.
  • Handle: RePEc:eee:matcom:v:51:y:2000:i:3:p:257-271
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475499001226
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salcedo-Sanz, Sancho & Deo, Ravinesh C. & Cornejo-Bueno, Laura & Camacho-Gómez, Carlos & Ghimire, Sujan, 2018. "An efficient neuro-evolutionary hybrid modelling mechanism for the estimation of daily global solar radiation in the Sunshine State of Australia," Applied Energy, Elsevier, vol. 209(C), pages 79-94.
    2. Manoj Kumar Paras & Lichuan Wang & Yan Chen & Antonela Curteza & Rudrajeet Pal & Daniel Ekwall, 2018. "A Sustainable Application Based on Grouping Genetic Algorithm for Modularized Redesign Model in Apparel Reverse Supply Chain," Sustainability, MDPI, vol. 10(9), pages 1-19, August.
    3. Vila Goncalves Filho, Eduardo & Jose Tiberti, Alexandre, 2006. "A group genetic algorithm for the machine cell formation problem," International Journal of Production Economics, Elsevier, vol. 102(1), pages 1-21, July.
    4. Cornejo-Bueno, L. & Nieto-Borge, J.C. & García-Díaz, P. & Rodríguez, G. & Salcedo-Sanz, S., 2016. "Significant wave height and energy flux prediction for marine energy applications: A grouping genetic algorithm – Extreme Learning Machine approach," Renewable Energy, Elsevier, vol. 97(C), pages 380-389.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:51:y:2000:i:3:p:257-271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.