IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v51y2000i3p233-243.html
   My bibliography  Save this article

Fuzzy behavior-based control trained by module learning to acquire the adaptive behaviors of mobile robots

Author

Listed:
  • Izumi, Kiyotaka
  • Watanabe, Keigo

Abstract

Intelligent control techniques for robotic systems have been used with some success in a wide variety of applications. In this paper, we construct a method for the intelligent control system of a robot using the fuzzy behavior-based control, which decomposes the control system into several elemental behaviors, and each one is realized by fuzzy reasoning. In particular, a module learning method is investigated for obtaining each representative group behavior, so that the robot can, consequently, acquire more general knowledge or fuzzy reasoning, than a central learning method. The proposed method is applied for an obstacle-avoidance problem of a mobile robot; the effectiveness of the method is illustrated through some simulations.

Suggested Citation

  • Izumi, Kiyotaka & Watanabe, Keigo, 2000. "Fuzzy behavior-based control trained by module learning to acquire the adaptive behaviors of mobile robots," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 51(3), pages 233-243.
  • Handle: RePEc:eee:matcom:v:51:y:2000:i:3:p:233-243
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475499001202
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. My, Chu Anh & Makhanov, Stanislav S. & Van, Nguyen A. & Duc, Vu M., 2020. "Modeling and computation of real-time applied torques and non-holonomic constraint forces/moment, and optimal design of wheels for an autonomous security robot tracking a moving target," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 170(C), pages 300-315.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:51:y:2000:i:3:p:233-243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.