IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v48y1999i4p385-392.html
   My bibliography  Save this article

Applying medical survival data to estimate the three-parameter Weibull distribution by the method of probability-weighted moments

Author

Listed:
  • Bartolucci, Alfred A.
  • Singh, Karan P.
  • Bartolucci, Anne D.
  • Bae, Sejong

Abstract

The method of probability-weighted moments is used to derive estimators of parameters and quantiles of the three-parameter Weibull distribution. The properties of these estimators are studied. The results obtained are compared with those obtained by using the method of maximum likelihood. The Weibull probability distribution has numerous applications in various areas: for example, breaking strength, life expectancy, survival analysis and animal bioassay. Because of its useful applications, its parameters need to be evaluated precisely, accurately and efficiently. There is a rich literature available on its maximum likelihood estimation method. However, there is no explicit solution for the estimates of the parameters or the best linear unbiased estimates. Further, the Weibull parameters cannot be expressed explicitly as a function of the conventional moments and iterative computational methods are needed. The maximum likelihood methodology is based on large-sample theory and the method might not work well when samples are small or moderate in size. Others have proposed a class of moments called probability-weighted moments. This class seems to be interesting as a method for estimating parameters and quantiles of distributions which can be written in inverse form. Such distributions include the Gumbel, Weibull, logistic, Tukey's symmetric lambda, Thomas Wakeby, and Mielke's kappa. It has been illustrated that rather simple expressions for the parameters can be written in inverse form in terms of probability-weighted moments (PWMs) for most of these distributions. In this paper we define the PWM estimators of the parameters for the three-parameter Weibull distribution. We investigate the properties of these estimators in a medical application setting. We also examine the added influence that censored data may have on the estimates.

Suggested Citation

  • Bartolucci, Alfred A. & Singh, Karan P. & Bartolucci, Anne D. & Bae, Sejong, 1999. "Applying medical survival data to estimate the three-parameter Weibull distribution by the method of probability-weighted moments," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 48(4), pages 385-392.
  • Handle: RePEc:eee:matcom:v:48:y:1999:i:4:p:385-392
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847549900018X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Örkcü, H. Hasan & Aksoy, Ertugˇrul & Dogˇan, Mustafa İsa, 2015. "Estimating the parameters of 3-p Weibull distribution through differential evolution," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 211-224.
    2. Örkcü, H. Hasan & Özsoy, Volkan Soner & Aksoy, Ertugrul & Dogan, Mustafa Isa, 2015. "Estimating the parameters of 3-p Weibull distribution using particle swarm optimization: A comprehensive experimental comparison," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 201-226.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:48:y:1999:i:4:p:385-392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.