IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v47y1998i2p383-390.html
   My bibliography  Save this article

Convergency of the Monte Carlo algorithms for linear transport modeling1This work was supported by the Ministry of Science, Education and Technology of Bulgaria under grants # I501/95 MM449/94 as well as by EC under INCO-COPERNICUS Project 960237-STABLE.1

Author

Listed:
  • Nedjalkov, M.
  • Dimov, I.

Abstract

We consider the convergency of the basic Monte Carlo (MC) algorithms for solving the Boltzmann transport equation (BTE). It is a linear kinetic equation describing a broad class of particle transport phenomena such as electron and neutron transport, radiative transfer, medium energy electron and ion scattering in solids, etc. The variety of the MC algorithms can be summarized in three main groups. The algorithms of the first one simulate the natural chain of events, happening during the physical process of the particle transport. The algorithms belonging to the other two generate the particle history back in time or modify the weight of the elementary events, thus achieving variance reduction in desired regions of the phase space. It has been shown that all of them can be generated by the iteration approach (IA) – a method for obtaining MC algorithms by applying numerical MC techniques to the integral form of the BTE. The convergence proof is based on the IA and the convergence of the Neumann series of the integral form of the BTE. A discussion of the probable error is presented.

Suggested Citation

  • Nedjalkov, M. & Dimov, I., 1998. "Convergency of the Monte Carlo algorithms for linear transport modeling1This work was supported by the Ministry of Science, Education and Technology of Bulgaria under grants # I501/95 MM449/94 as well," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 47(2), pages 383-390.
  • Handle: RePEc:eee:matcom:v:47:y:1998:i:2:p:383-390
    DOI: 10.1016/S0378-4754(98)00113-X
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847549800113X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0378-4754(98)00113-X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Rui & Liu, Yan-Kui, 2010. "Modeling data envelopment analysis by chance method in hybrid uncertain environments," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(5), pages 922-950.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:47:y:1998:i:2:p:383-390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.