IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v45y1998i5p543-560.html
   My bibliography  Save this article

Minimal involutive bases

Author

Listed:
  • Gerdt, Vladimir P.
  • Blinkov, Yuri A.

Abstract

In this paper, we present an algorithm for construction of minimal involutive polynomial bases which are Gröbner bases of the special form. The most general involutive algorithms are based on the concept of involutive monomial division which leads to partition of variables into multiplicative and non-multiplicative. This partition gives thereby the self-consistent computational procedure for constructing an involutive basis by performing non-multiplicative prolongations and multiplicative reductions. Every specific involutive division generates a particular form of involutive computational procedure. In addition to three involutive divisions used by Thomas, Janet and Pommaret for analysis of partial differential equations we define two new ones. These two divisions, as well as Thomas division, do not depend on the order of variables. We prove noetherity, continuity and constructivity of the new divisions that provides correctness and termination of involutive algorithms for any finite set of input polynomials and any admissible monomial ordering. We show that, given an admissible monomial ordering, a monic minimal involutive basis is uniquely defined and thereby can be considered as canonical much like the reduced Gröbner basis.

Suggested Citation

  • Gerdt, Vladimir P. & Blinkov, Yuri A., 1998. "Minimal involutive bases," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 45(5), pages 543-560.
  • Handle: RePEc:eee:matcom:v:45:y:1998:i:5:p:543-560
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475497001286
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:45:y:1998:i:5:p:543-560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.