IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v42y1996i4p509-528.html
   My bibliography  Save this article

Floating point Gröbner bases

Author

Listed:
  • Shirayanagi, Kiyoshi

Abstract

Bracket coefficients for polynomials are introduced. These are like specific precision floating point numbers together with error terms. Working in terms of bracket coefficients, an algorithm that computes a Gröbner basis with floating point coefficients is presented, and a new criterion for determining whether a bracket coefficient is zero is proposed. Given a finite set F of polynomials with real coefficients, let Gμ be the result of the algorithm for F and a precision value μ, and G be a true Gröbner basis of F. Then, as μ approaches infinity, Gμ converges to G coefficientwise. Moreover, there is a precision M such that if μ ≥ M, then the sets of monomials with non-zero coefficients of Gμ and G are exactly the same. The practical usefulness of the algorithm is suggested by experimental results.

Suggested Citation

  • Shirayanagi, Kiyoshi, 1996. "Floating point Gröbner bases," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 42(4), pages 509-528.
  • Handle: RePEc:eee:matcom:v:42:y:1996:i:4:p:509-528
    DOI: 10.1016/S0378-4754(96)00027-4
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475496000274
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0378-4754(96)00027-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:42:y:1996:i:4:p:509-528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.