IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v42y1996i2p179-186.html
   My bibliography  Save this article

Mechanistic mathematical models of microbial growth in bioreactors and in natural soils: Explanation of complex phenomena

Author

Listed:
  • Panikov, N.S.

Abstract

The paper summarizes the development of so-called synthetic chemostat model (SCM) simulating complex dynamic behavior of microorganisms. The basic SCM represents microbial growth as a conversion of exosubstrate into cell macromolecules via pool of intermediates. The “quality” of biomass is characterized by scalar variable r. This variable denotes a relative amount of inducible cell constituents which provide intensive growth and display positive correlation with growth rate (RNA, ribosomal proteins, respiratory enzymes, etc.). Basic SCM (four differential equations) was able to simulate both steady-state growth and transient dynamics of such well studied microorganisms as Pseudomonas and Enterobacteria. To describe the behavior of other organisms having unconventional life strategy (sporeforming bacteria, K-selected and oligotrophic microorganisms), the basic SCM was augmented to different degree by incorporating additional state variables (reserve compounds, prospore compartment, signal metabolic products, etc.). The competition of 2–5 species for a common limiting substrate and growth of one population on several substrates were simulated by enlarged model containing up to 22 differential equations. Application of SCM in physiological and ecological studies provided mechanistic interpretation of many unusual aspects of microbial behavior both in vitro and in situ.

Suggested Citation

  • Panikov, N.S., 1996. "Mechanistic mathematical models of microbial growth in bioreactors and in natural soils: Explanation of complex phenomena," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 42(2), pages 179-186.
  • Handle: RePEc:eee:matcom:v:42:y:1996:i:2:p:179-186
    DOI: 10.1016/0378-4754(95)00127-1
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378475495001271
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0378-4754(95)00127-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Banitz, Thomas & Fetzer, Ingo & Johst, Karin & Wick, Lukas Y. & Harms, Hauke & Frank, Karin, 2011. "Assessing biodegradation benefits from dispersal networks," Ecological Modelling, Elsevier, vol. 222(14), pages 2552-2560.
    2. Semenov, Alexander V. & Franz, Eelco & van Bruggen, Ariena H.C., 2010. "COLIWAVE a simulation model for survival of E. coli O157:H7 in dairy manure and manure-amended soil," Ecological Modelling, Elsevier, vol. 221(4), pages 599-609.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:42:y:1996:i:2:p:179-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.