IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v38y1995i1p63-68.html
   My bibliography  Save this article

Stability of weak numerical schemes for stochastic differential equations

Author

Listed:
  • Hofmann, Norbert

Abstract

We consider numerical stability and convergence of weak schemes solving stochastic differential equations. A relatively strong notion of stability for a special type of test equations is proposed. These are stochastic differential equations with multiplicative noise. For explicit and implicit Euler schemes the regions of stability are also examined.

Suggested Citation

  • Hofmann, Norbert, 1995. "Stability of weak numerical schemes for stochastic differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 38(1), pages 63-68.
  • Handle: RePEc:eee:matcom:v:38:y:1995:i:1:p:63-68
    DOI: 10.1016/0378-4754(93)E0067-F
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378475493E0067F
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0378-4754(93)E0067-F?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Norbert Hofmann & Eckhard Platen & Martin Schweizer, 1992. "Option Pricing Under Incompleteness and Stochastic Volatility," Mathematical Finance, Wiley Blackwell, vol. 2(3), pages 153-187, July.
    2. P. E. Kloeden & Eckhard Platen, 1992. "Higher-order implicit strong numerical schemes for stochastic differential equations," Published Paper Series 1992-1, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Shujin & Han, Dong, 2007. "Algorithmic analysis of Euler scheme for a class of stochastic differential equations with jumps," Statistics & Probability Letters, Elsevier, vol. 77(2), pages 211-219, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eckhard Platen, 2003. "Pricing and Hedging for Incomplete Jump Diffusion Benchmark Models," Research Paper Series 110, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. David Heath & Eckhard Platen, 2002. "A variance reduction technique based on integral representations," Quantitative Finance, Taylor & Francis Journals, vol. 2(5), pages 362-369.
    3. Vicky Henderson & David Hobson, 2001. "Passport options with stochastic volatility," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(2), pages 97-118.
    4. Lay Harold A. & Colgin Zane & Reshniak Viktor & Khaliq Abdul Q. M., 2018. "On the implementation of multilevel Monte Carlo simulation of the stochastic volatility and interest rate model using multi-GPU clusters," Monte Carlo Methods and Applications, De Gruyter, vol. 24(4), pages 309-321, December.
    5. F. Fornari & A. Mele, 1998. "ARCH Models and Option Pricing : The Continuous Time Connection," THEMA Working Papers 98-30, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    6. Patrick Assonken & Gangaram Ladde, 2017. "Simulation and Calibration of Options Prices under a Levy-Type Stochastic Dynamic and Semi Markov Market Switching Regimes Processes," Applied Economics and Finance, Redfame publishing, vol. 4(1), pages 93-126, January.
    7. Chenxu Li, 2016. "Bessel Processes, Stochastic Volatility, And Timer Options," Mathematical Finance, Wiley Blackwell, vol. 26(1), pages 122-148, January.
    8. Gatfaoui Hayette, 2004. "Idiosyncratic Risk, Systematic Risk and Stochastic Volatility: An Implementation of Merton’s Credit Risk Valuation," Finance 0404004, University Library of Munich, Germany.
    9. Kolkiewicz, A. W. & Tan, K. S., 2006. "Unit-Linked Life Insurance Contracts with Lapse Rates Dependent on Economic Factors," Annals of Actuarial Science, Cambridge University Press, vol. 1(1), pages 49-78, March.
    10. W. Schachermayer, 1994. "Martingale Measures For Discrete‐Time Processes With Infinite Horizon," Mathematical Finance, Wiley Blackwell, vol. 4(1), pages 25-55, January.
    11. Gatfaoui Hayette & Chauveau Thierry, 2004. "Pricing and Hedging Options in Incomplete Markets: Idiosyncratic Risk, Systematic Risk and Stochastic Volatility," Finance 0404002, University Library of Munich, Germany.
    12. M. Mania & R. Tevzadze & T. Toronjadze, 2007. "$L^2$-approximating pricing under restricted information," Papers 0708.4095, arXiv.org.
    13. M. E. Mancino & S. Ogawa & S. Sanfelici, 2004. "A numerical study of the smile effect in implied volatilities induced by a nonlinear feedback model," Economics Department Working Papers 2004-ME01, Department of Economics, Parma University (Italy).
    14. Mahmoud A. Eissa & Boping Tian, 2017. "Lobatto-Milstein Numerical Method in Application of Uncertainty Investment of Solar Power Projects," Energies, MDPI, vol. 10(1), pages 1-19, January.
    15. Jan Bergenthum & Ludger Rüschendorf, 2006. "Comparison of Option Prices in Semimartingale Models," Finance and Stochastics, Springer, vol. 10(2), pages 222-249, April.
    16. Eckhard Platen, 2011. "A Benchmark Approach to Investing and Pricing," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 28, pages 409-426, World Scientific Publishing Co. Pte. Ltd..
    17. Robert A. Jarrow, 2008. "Derivative Security Markets, Market Manipulation, and Option Pricing Theory," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 7, pages 131-151, World Scientific Publishing Co. Pte. Ltd..
    18. Ashkan Nikeghbali & Eckhard Platen, 2008. "On Honest Times in Financial Modeling," Research Paper Series 229, Quantitative Finance Research Centre, University of Technology, Sydney.
    19. Platen, Eckhard, 1995. "On weak implicit and predictor-corrector methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 38(1), pages 69-76.
    20. Rüdiger Frey & Wolfgang J. Runggaldier, 1999. "Risk-minimizing hedging strategies under restricted information: The case of stochastic volatility models observable only at discrete random times," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 50(2), pages 339-350, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:38:y:1995:i:1:p:63-68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.