IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v35y1993i2p123-137.html
   My bibliography  Save this article

Guaranteed nonlinear parameter estimation from bounded-error data via interval analysis

Author

Listed:
  • Jaulin, Luc
  • Walter, Eric

Abstract

This paper deals with parameter estimation in the bounded-error context. A new approach, based on interval analysis, is proposed to compute guaranteed estimates of suitable characteristics of the set of all values of the parameter vector such that the error between the experimental data and the model outputs belongs to some predefined feasible set. This approach is especially suited to models whose output is nonlinear in their parameters, a situation where most available methods fail to provide any guarantee as to the global validity of the results obtained. After a brief presentation of interval analysis, an algorithm is proposed, which makes it possible to obtain guaranteed estimates of characteristics of such as its volume or the smallest axis-aligned box that contains it. Properties of this algorithm are established, and illustrated on a simple example.

Suggested Citation

  • Jaulin, Luc & Walter, Eric, 1993. "Guaranteed nonlinear parameter estimation from bounded-error data via interval analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 35(2), pages 123-137.
  • Handle: RePEc:eee:matcom:v:35:y:1993:i:2:p:123-137
    DOI: 10.1016/0378-4754(93)90008-I
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/037847549390008I
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0378-4754(93)90008-I?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walter, Eric & Piet-Lahanier, Hélène, 1990. "Estimation of parameter bounds from bounded-error data: a survey," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 32(5), pages 449-468.
    2. Broman, V. & Shensa, M.J., 1990. "A compact algorithm for the intersection and approximation of N-dimensional polytopes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 32(5), pages 469-480.
    3. Piet-Lahanier, H. & Walter, E., 1990. "Characterization of non-connected parameter uncertainty regions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 32(5), pages 553-560.
    4. Moore, Ramon, 1992. "Parameter sets for bounded-error data," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 34(2), pages 113-119.
    5. Mo, S.H. & Norton, J.P., 1990. "Fast and robust algorithm to compute exact polytope parameter bounds," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 32(5), pages 481-493.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petrone, Giovanni & Spagnuolo, Giovanni & Zamboni, Walter & Siano, Raffaele, 2021. "An improved mathematical method for the identification of fuel cell impedance parameters based on the interval arithmetic," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 78-96.
    2. Norton, J.P., 1999. "Translation of bounds on time-domain behaviour of dynamical systems into parameter bounds for discrete-time rational transfer-function models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 48(4), pages 469-478.
    3. Jaulin, L. & Walter, E. & Lévêque, O. & Meizel, D., 2000. "Set inversion for χ-algorithms, with application to guaranteed robot localization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 52(3), pages 197-210.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Walter, Eric & Piet-Lahanier, Hélène, 1990. "Estimation of parameter bounds from bounded-error data: a survey," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 32(5), pages 449-468.
    2. Piet-Lahanier, H. & Walter, E., 1990. "Exact recursive characterization of feasible parameter sets in the linear case," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 32(5), pages 495-504.
    3. Piet-Lahanier, Hélène & Veres, Sándor M. & Walter, Eric, 1992. "Comparison of methods for solving sets of linear inequalities in the bounded-error context," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 34(6), pages 515-524.
    4. Keesman, Karel, 1990. "Membership-set estimation using random scanning and principal component analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 32(5), pages 535-543.
    5. Clement, Thierry & Gentil, Sylviane, 1990. "Recursive membership set estimation for output-error models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 32(5), pages 505-513.
    6. da Silva, Ivan N. & de Arruda, Lucia V.R. & do Amaral, Wagner C., 1999. "A novel approach to robust parameter estimation using neurofuzzy systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 48(3), pages 251-268.
    7. Mo, S.H. & Norton, J.P., 1990. "Fast and robust algorithm to compute exact polytope parameter bounds," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 32(5), pages 481-493.
    8. Piet-Lahanier, H. & Walter, E., 1990. "Characterization of non-connected parameter uncertainty regions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 32(5), pages 553-560.
    9. Marco Stenborg Petterson & David Seim & Jesse M. Shapiro, 2023. "Bounds on a Slope from Size Restrictions on Economic Shocks," American Economic Journal: Microeconomics, American Economic Association, vol. 15(3), pages 552-572, August.
    10. Norton, J.P. & Mo, S.H., 1990. "Parameter bounding for time-varying systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 32(5), pages 527-534.
    11. Shary, Sergey P., 1995. "Solving the linear interval tolerance problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 39(1), pages 53-85.
    12. Enríquez, R. & Jiménez, M.J. & Heras, M.R., 2017. "Towards non-intrusive thermal load Monitoring of buildings: BES calibration," Applied Energy, Elsevier, vol. 191(C), pages 44-54.
    13. Broman, V. & Shensa, M.J., 1990. "A compact algorithm for the intersection and approximation of N-dimensional polytopes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 32(5), pages 469-480.
    14. Pronzato, Luc & Walter, Eric, 1990. "Experiment design for bounded-error models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 32(5), pages 571-584.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:35:y:1993:i:2:p:123-137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.