IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v33y1992i5p575-580.html
   My bibliography  Save this article

MLE of some continuous time financial models: Some Monte Carlo results

Author

Listed:
  • Tse, Y.K.

Abstract

No abstract is available for this item.

Suggested Citation

  • Tse, Y.K., 1992. "MLE of some continuous time financial models: Some Monte Carlo results," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 33(5), pages 575-580.
  • Handle: RePEc:eee:matcom:v:33:y:1992:i:5:p:575-580
    DOI: 10.1016/0378-4754(92)90155-A
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/037847549290155A
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0378-4754(92)90155-A?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    2. Lo, Andrew W., 1988. "Maximum Likelihood Estimation of Generalized Itô Processes with Discretely Sampled Data," Econometric Theory, Cambridge University Press, vol. 4(2), pages 231-247, August.
    3. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tse, Y.K., 1997. "Short-term interest rate models and generation of interest rate scenarios," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 43(3), pages 475-480.
    2. Tse, Y. K., 1995. "Some international evidence on the stochastic behavior of interest rates," Journal of International Money and Finance, Elsevier, vol. 14(5), pages 721-738, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Nian & Chen, Nan & Wan, Xiangwei, 2019. "A new delta expansion for multivariate diffusions via the Itô-Taylor expansion," Journal of Econometrics, Elsevier, vol. 209(2), pages 256-288.
    2. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    3. Yu, Jun, 2012. "Bias in the estimation of the mean reversion parameter in continuous time models," Journal of Econometrics, Elsevier, vol. 169(1), pages 114-122.
    4. Yu, Jun, 2014. "Econometric Analysis Of Continuous Time Models: A Survey Of Peter Phillips’S Work And Some New Results," Econometric Theory, Cambridge University Press, vol. 30(4), pages 737-774, August.
    5. Choi Seungmoon, 2009. "Regime-Switching Univariate Diffusion Models of the Short-Term Interest Rate," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(1), pages 1-41, March.
    6. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    7. Faff, Robert & Gray, Philip, 2006. "On the estimation and comparison of short-rate models using the generalised method of moments," Journal of Banking & Finance, Elsevier, vol. 30(11), pages 3131-3146, November.
    8. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    9. Qinwen Zhu & Hui Liu & Chengfeng Sun, 2019. "Edgeworth Expansion For The Distribution Of The Maximum Likelihood Estimate In The Vasicek Model," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-26, March.
    10. Wang, Xiaohu & Phillips, Peter C.B. & Yu, Jun, 2011. "Bias in estimating multivariate and univariate diffusions," Journal of Econometrics, Elsevier, vol. 161(2), pages 228-245, April.
    11. Kristensen, Dennis, 2008. "Estimation of partial differential equations with applications in finance," Journal of Econometrics, Elsevier, vol. 144(2), pages 392-408, June.
    12. repec:wyi:journl:002108 is not listed on IDEAS
    13. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
    14. Broze, Laurence & Scaillet, Olivier & Zakoian, Jean-Michel, 1995. "Testing for continuous-time models of the short-term interest rate," Journal of Empirical Finance, Elsevier, vol. 2(3), pages 199-223, September.
    15. Kristensen, Dennis, 2010. "Pseudo-maximum likelihood estimation in two classes of semiparametric diffusion models," Journal of Econometrics, Elsevier, vol. 156(2), pages 239-259, June.
    16. Dennis Kristensen, 2004. "A Semiparametric Single-Factor Model of the Term Structure," FMG Discussion Papers dp501, Financial Markets Group.
    17. Pastorello, S. & Rossi, E., 2010. "Efficient importance sampling maximum likelihood estimation of stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2753-2762, November.
    18. Peter C.B.Phillips & Jun Yu, "undated". "Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance," Working Papers CoFie-08-2009, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    19. Thornton, Michael A. & Chambers, Marcus J., 2016. "The exact discretisation of CARMA models with applications in finance," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 739-761.
    20. Ruijun Bu & Fredj Jawadi & Yuyi Li, 2020. "A multifactor transformed diffusion model with applications to VIX and VIX futures," Econometric Reviews, Taylor & Francis Journals, vol. 39(1), pages 27-53, January.
    21. Song, Zhaogang, 2011. "A martingale approach for testing diffusion models based on infinitesimal operator," Journal of Econometrics, Elsevier, vol. 162(2), pages 189-212, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:33:y:1992:i:5:p:575-580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.