IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v232y2025icp427-453.html
   My bibliography  Save this article

Global dynamics in the lateral oscillation model of pedestrian walking on a vibrating surface

Author

Listed:
  • Hu, Sengen
  • Zhou, Liangqiang

Abstract

This paper studies the lateral oscillations of pedestrian walking on a vibrating ground with a known motion, which can be modeled by a hybrid Rayleigh–van der Pol–Duffing oscillator with quintic nonlinearity and dual parametric excitations. The focus of the work is on the global dynamics of the oscillator, including chaos and subharmonic bifurcations. It reveals that the system can be subdivided into three categories in the undisturbed case: single well, double hump, and triple well. Specifically, the exact solutions for homoclinic, heteroclinic and subharmonic orbits in triple-well case are obtained analytically. The Melnikov method is employed to investigate the chaotic phenomena resulting from different orbits. Compared to a single self-excited oscillator, this hybrid oscillator exhibits higher sensitivity to external excitation and strong nonlinear terms. By adjusting the system parameters, the peak value of the chaos threshold can be controlled to avoid the occurrence of chaos. Based on the subharmonic Melnikov method, the subharmonic bifurcations of the system are examined and the extreme case is discussed. Some nonlinear phenomena are discovered. The system only exhibits chaotic behavior when there is a strong resonance, that is, when there is an integer-order subharmonic bifurcation. Furthermore, we find the pathways to chaos though subharmonic bifurcations encompass two distinct mechanisms: odd and even finite bifurcation sequences. The numerical simulation serves to verify the findings of the preceding analysis, while simultaneously elucidating a number of additional dynamic phenomena, including multi-stable state motion, bursting oscillations, and the coexistence of attractors.

Suggested Citation

  • Hu, Sengen & Zhou, Liangqiang, 2025. "Global dynamics in the lateral oscillation model of pedestrian walking on a vibrating surface," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 232(C), pages 427-453.
  • Handle: RePEc:eee:matcom:v:232:y:2025:i:c:p:427-453
    DOI: 10.1016/j.matcom.2024.12.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847542400510X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.12.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:232:y:2025:i:c:p:427-453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.