IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v229y2025icp867-884.html
   My bibliography  Save this article

Unified algorithms for distributed regularized linear regression model

Author

Listed:
  • Chen, Bingzhen
  • Zhai, Wenjuan

Abstract

In recent years, distributed statistical models have received increasing attention for large-scale data analysis. On the one hand, data sets come from multiple data sources, and are stored in different locations due to limited bandwidth and storage, or privacy protocols, directly centralizing all data together is impossible. On the other hand, the size of data is so large that it is difficult or inefficient to analyze data together. There are two main research aspects to using distributed statistical models to analyze large-scale data. The first one is to study the statistical convergence rate under some mild assumptions. The second one is to establish fast and efficient optimization algorithms considering the property of the loss function. There is a lot of research on the first aspect, but relatively little research on the second one. Motivated by this, we consider the construction of unified algorithms for distributed linear regression with different losses and regularizers. As a result, we designed two type methods, proximal alternating direction method of multipliers (pADMM) and distributed accelerated proximal gradient method with line-search (DAPGL). In order to demonstrate the efficiency of the proposed algorithms, we perform numerical experiments on the distributed Huber-Lasso model and Huber-Group-Lasso model. In view of the numerical results, we can observe that these two algorithms are more competitive than some of state-of-art algorithms. In particular, DAPGL algorithm performs better than pADMM in most cases.

Suggested Citation

  • Chen, Bingzhen & Zhai, Wenjuan, 2025. "Unified algorithms for distributed regularized linear regression model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 229(C), pages 867-884.
  • Handle: RePEc:eee:matcom:v:229:y:2025:i:c:p:867-884
    DOI: 10.1016/j.matcom.2024.10.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424004063
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.10.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:229:y:2025:i:c:p:867-884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.