IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v229y2025icp350-361.html
   My bibliography  Save this article

Short-term electricity price forecasting through demand and renewable generation prediction

Author

Listed:
  • Belenguer, E.
  • Segarra-Tamarit, J.
  • Pérez, E.
  • Vidal-Albalate, R.

Abstract

Electricity market prices depend on various variables, including energy demand, weather conditions, gas prices, renewable generation, and other factors. Fluctuating prices are a common characteristic of electricity markets, making electricity price forecasting a complex process where predicting different variables is crucial. This paper introduces a hybrid forecasting model developed for the Spanish case. The model comprises four forecasting tools, with three of them relying on artificial neural networks, while the demand forecasting model employs a similar-day approach with temperature correction. This model can be employed by electrical energy trading companies to enhance their trading strategies in the day-ahead market and in derivative markets with a time horizon ranging from two to ten days. The results indicate that, with a forecasting horizon of two days, the price forecast has a rMAE of 8.18%. Furthermore, the model enables a market agent to accurately decide whether to purchase energy in the daily market or in the derivatives market in 69.9% of the days.

Suggested Citation

  • Belenguer, E. & Segarra-Tamarit, J. & Pérez, E. & Vidal-Albalate, R., 2025. "Short-term electricity price forecasting through demand and renewable generation prediction," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 229(C), pages 350-361.
  • Handle: RePEc:eee:matcom:v:229:y:2025:i:c:p:350-361
    DOI: 10.1016/j.matcom.2024.10.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424003938
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.10.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:229:y:2025:i:c:p:350-361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.