IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v229y2025icp235-245.html
   My bibliography  Save this article

Dynamic analysis of Hashimoto’s Thyroiditis bio-mathematical model using artificial neural network

Author

Listed:
  • Kumar, Rakesh
  • Dhua, Sudarshan

Abstract

This article establishes an efficient solution scheme for a mathematical model of Hashimoto’s Thyroiditis (HT) employing artificial neural networks. HT is an auto-immune disorder hostile to the thyroid follicle cells, effectuating hypothyroid or hyperthyroidism. Under this condition, the thyroid-stimulating hormone (TSH) alters incomparably to the free thyroxine (FT4) interrupts the functioning of the hypothalamus-pituitary-thyroid (HPT) axis, implicating the thyroid follicle cells getting destroyed. We primarily focus on utilizing artificial neural network (ANN) to perform numerical simulations for the system of ordinary differential equations describing the dynamics of an existing 4D model of HT. The presented model comprises four time-dependent variables: TSH, FT4, anti-thyroid antibodies (Ab), and size of the thyroid gland (T). We utilize ND-Solver and ANN scheme in the Mathematica software to acquire the computational data and illustrate thus retrieved results with essential performance plots. Further, mean square error has been considered in validating the proposed ANN-based approach accurately. The plot for training and validation loss exhibits the effectiveness of the proposed methodology, and substantiate that the suggested ANN approach is a good fit for the solving the mathematical model of HT.

Suggested Citation

  • Kumar, Rakesh & Dhua, Sudarshan, 2025. "Dynamic analysis of Hashimoto’s Thyroiditis bio-mathematical model using artificial neural network," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 229(C), pages 235-245.
  • Handle: RePEc:eee:matcom:v:229:y:2025:i:c:p:235-245
    DOI: 10.1016/j.matcom.2024.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424003902
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:229:y:2025:i:c:p:235-245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.