A novel fast second order approach with high-order compact difference scheme and its analysis for the tempered fractional Burgers equation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2024.08.003
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yang, Xiaojia & Ge, Yongbin & Zhang, Lin, 2019. "A class of high-order compact difference schemes for solving the Burgers’ equations," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 394-417.
- Zhang, Qifeng & Sun, Cuicui & Fang, Zhi-Wei & Sun, Hai-Wei, 2022. "Pointwise error estimate and stability analysis of fourth-order compact difference scheme for time-fractional Burgers’ equation," Applied Mathematics and Computation, Elsevier, vol. 418(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ying Li & Longxiang Xu & Shihui Ying, 2022. "DWNN: Deep Wavelet Neural Network for Solving Partial Differential Equations," Mathematics, MDPI, vol. 10(12), pages 1-35, June.
- Yasir Nawaz & Muhammad Shoaib Arif & Wasfi Shatanawi & Muhammad Usman Ashraf, 2022. "A Fourth Order Numerical Scheme for Unsteady Mixed Convection Boundary Layer Flow: A Comparative Computational Study," Energies, MDPI, vol. 15(3), pages 1-15, January.
- Cavoretto, Roberto, 2022. "Adaptive LOOCV-based kernel methods for solving time-dependent BVPs," Applied Mathematics and Computation, Elsevier, vol. 429(C).
- Peng, Xiangyi & Xu, Da & Qiu, Wenlin, 2023. "Pointwise error estimates of compact difference scheme for mixed-type time-fractional Burgers’ equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 702-726.
- Korpinar, Zeliha & Inc, Mustafa & Bayram, Mustafa, 2020. "Theory and application for the system of fractional Burger equations with Mittag leffler kernel," Applied Mathematics and Computation, Elsevier, vol. 367(C).
More about this item
Keywords
Time fractional Burgers equation; λ£2 − 1σ algorithm; Tempered fractional derivative; Fast convolution algorithms; Compact difference scheme; Stability and convergence;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:227:y:2025:i:c:p:168-188. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.