IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v222y2024icp174-187.html
   My bibliography  Save this article

Input-to-state stability of stochastic Markovian jump genetic regulatory networks

Author

Listed:
  • Cao, Yang
  • Chandrasekar, A.
  • Radhika, T.
  • Vijayakumar, V.

Abstract

The development of gene circuits in logic modules that start enormous output distributions with low signal-to-noise ratios is a difficult problem in engineering. As a result, the gene model depicts the transcription and translation of a single gene produced in the modification of noise in isolated logic modules. Our goal is to construct such networks with all types of connectivity. Further, the impacts of noise on further complex genetic networks have been investigated using stochastic gene models. Using this information as a foundation, our research investigates the input-to-state stability investigation for stochastic Markovian jump genetic regulatory networks with time-varying delay components. The goal of this article is to develop genetic networks with temporal delays, which are crucial for genetic regulation because slow biochemical processes like gene transcription and translation need time to occur. Additionally, the Markovian chain is essential for demonstrating how a system shifts from one mode to another with known transition probabilities. In the stochastic case, some complex systems with random disturbance will occur. Due to this significance the genetic regulatory network with stochastic case is applied to identify the complex behaviour among genes and proteins of the micro perspective. By establishing the Lyapunov functional with Ito’s and Dynkin’s formula, new stability conditions are derived and which is effectively solved by MATLAB toolbox. The efficiency of the suggested technique is demonstrated using a numerical example.

Suggested Citation

  • Cao, Yang & Chandrasekar, A. & Radhika, T. & Vijayakumar, V., 2024. "Input-to-state stability of stochastic Markovian jump genetic regulatory networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 222(C), pages 174-187.
  • Handle: RePEc:eee:matcom:v:222:y:2024:i:c:p:174-187
    DOI: 10.1016/j.matcom.2023.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423003336
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shu, Jinlong & Wu, Baowei & Xiong, Lianglin, 2022. "Stochastic stability criteria and event-triggered control of delayed Markovian jump quaternion-valued neural networks," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Xu-Kang & He, Yong, 2024. "Reachable set estimation of delayed Markovian jump neural networks via variables-augmented-based free-weighting-matrices method," Applied Mathematics and Computation, Elsevier, vol. 478(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:222:y:2024:i:c:p:174-187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.