IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v217y2024icp1-20.html
   My bibliography  Save this article

Chebyshev–Picard iteration methods for solving delay differential equations

Author

Listed:
  • Zhou, Quan
  • Wang, Yinkun
  • Liu, Yicheng

Abstract

In this paper, we propose an effective Chebyshev–Picard iteration (CPI) method for solving delay differential equations with a constant delay. This approach adopts the Chebyshev series to represent the solution and improves the accuracy of the solution by successive Picard iterations. The CPI method is implemented in a matrix–vector form efficiently without matrix inversion. We also present a multi-interval CPI method for solving long-term simulation problems. Further, the convergence of the CPI method is analyzed by evaluating the eigenvalues of the coefficient matrices of the iteration. Several numerical experiments including both the linear and nonlinear systems with delay effects are presented to demonstrate the high accuracy and efficiency of the CPI method by comparison with the classic methods.

Suggested Citation

  • Zhou, Quan & Wang, Yinkun & Liu, Yicheng, 2024. "Chebyshev–Picard iteration methods for solving delay differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 1-20.
  • Handle: RePEc:eee:matcom:v:217:y:2024:i:c:p:1-20
    DOI: 10.1016/j.matcom.2023.09.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423004238
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.09.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Xiaoqiang & Zhang, Chengjian, 2019. "Solving nonlinear functional–differential and functional equations with constant delay via block boundary value methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 21-32.
    2. Hongliang Liu & Aiguo Xiao & Lihong Su, 2013. "Convergence of Variational Iteration Method for Second-Order Delay Differential Equations," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-9, February.
    3. Tafakkori–Bafghi, M. & Loghmani, G.B. & Heydari, M., 2022. "Numerical solution of two-point nonlinear boundary value problems via Legendre–Picard iteration method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 199(C), pages 133-159.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Abolhasani & Saeid Abbasbandy & Tofigh Allahviranloo, 2017. "A New Variational Iteration Method for a Class of Fractional Convection-Diffusion Equations in Large Domains," Mathematics, MDPI, vol. 5(2), pages 1-15, May.
    2. Mufutau Ajani Rufai, 2022. "An Efficient Third-Derivative Hybrid Block Method for the Solution of Second-Order BVPs," Mathematics, MDPI, vol. 10(19), pages 1-15, October.
    3. Kumar, Surendra & Sharma, Abhishek & Pal Singh, Harendra, 2021. "Convergence and global stability analysis of fractional delay block boundary value methods for fractional differential equations with delay," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    4. Zhao, Leilei & Xue, Yixun & Sun, Hongbin & Du, Yuan & Chang, Xinyue & Su, Jia & Li, Zening, 2023. "Benefit allocation for combined heat and power dispatch considering mutual trust," Applied Energy, Elsevier, vol. 345(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:217:y:2024:i:c:p:1-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.