IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v216y2024icp187-197.html
   My bibliography  Save this article

Stochastic Galerkin method and port-Hamiltonian form for linear dynamical systems of second order

Author

Listed:
  • Pulch, Roland

Abstract

We investigate linear dynamical systems of second order. Uncertainty quantification is applied, where physical parameters are substituted by random variables. A stochastic Galerkin method yields a linear dynamical system of second order with high dimensionality. A structure-preserving model order reduction (MOR) produces a small linear dynamical system of second order again. We arrange an associated port-Hamiltonian (pH) formulation of first order for the second-order systems. Each pH system implies a Hamiltonian function describing an internal energy. We examine the properties of the Hamiltonian function for the stochastic Galerkin systems. We show numerical results using a test example, where both the stochastic Galerkin method and structure-preserving MOR are applied.

Suggested Citation

  • Pulch, Roland, 2024. "Stochastic Galerkin method and port-Hamiltonian form for linear dynamical systems of second order," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 216(C), pages 187-197.
  • Handle: RePEc:eee:matcom:v:216:y:2024:i:c:p:187-197
    DOI: 10.1016/j.matcom.2023.09.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423003865
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.09.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pulch, Roland, 2018. "Model order reduction and low-dimensional representations for random linear dynamical systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 144(C), pages 1-20.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pulch, Roland, 2019. "Model order reduction for random nonlinear dynamical systems and low-dimensional representations for their quantities of interest," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 76-92.
    2. Delagnes, T. & Henneron, T. & Clenet, S. & Fratila, M. & Ducreux, J.P., 2023. "Comparison of reduced basis construction methods for Model Order Reduction, with application to non-linear low frequency electromagnetics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 470-488.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:216:y:2024:i:c:p:187-197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.