IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v215y2024icp338-356.html
   My bibliography  Save this article

Fast and efficient numerical method for solving the Allen–Cahn equation on the cubic surface

Author

Listed:
  • Hwang, Youngjin
  • Yang, Junxiang
  • Lee, Gyeongyu
  • Ham, Seokjun
  • Kang, Seungyoon
  • Kwak, Soobin
  • Kim, Junseok

Abstract

In this study, we present a fast and efficient finite difference method (FDM) for solving the Allen–Cahn (AC) equation on the cubic surface. The proposed method applies appropriate boundary conditions in the two-dimensional (2D) space to calculate numerical solutions on cubic surfaces, which is relatively simpler than a direct computation in the three-dimensional (3D) space. To numerically solve the AC equation on the cubic surface, we first unfold the cubic surface domain in the 3D space into the 2D space, and then apply the FDM on the six planar sub-domains with appropriate boundary conditions. The proposed method solves the AC equation using an operator splitting method that splits the AC equation into the linear and nonlinear terms. To demonstrate that the proposed algorithm satisfies the properties of the AC equation on the cubic surface, we perform the numerical experiments such as convergence test, total energy decrease, and maximum principle.

Suggested Citation

  • Hwang, Youngjin & Yang, Junxiang & Lee, Gyeongyu & Ham, Seokjun & Kang, Seungyoon & Kwak, Soobin & Kim, Junseok, 2024. "Fast and efficient numerical method for solving the Allen–Cahn equation on the cubic surface," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 338-356.
  • Handle: RePEc:eee:matcom:v:215:y:2024:i:c:p:338-356
    DOI: 10.1016/j.matcom.2023.07.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423003191
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.07.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Xufeng & Feng, Xinlong, 2022. "A second-order maximum bound principle preserving operator splitting method for the Allen–Cahn equation with applications in multi-phase systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 36-58.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ham, Seokjun & Kim, Junseok, 2023. "Stability analysis for a maximum principle preserving explicit scheme of the Allen–Cahn equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 453-465.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:215:y:2024:i:c:p:338-356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.