IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v210y2023icp169-183.html
   My bibliography  Save this article

A high-order compact difference method and its Richardson extrapolation for semi-linear reaction–diffusion equations with piecewise continuous argument in diffusion term

Author

Listed:
  • Hou, Bo
  • Zhang, Chengjian

Abstract

In this paper, for the initial–boundary value problems of semi-linear reaction–diffusion equations with piecewise continuous argument in spatial derivative, we suggest Crank–Nicolson method, high-order compact difference (HOCD) method and HOCD-based Richardson extrapolation (RHOCD) method. Under the appropriate conditions, it is proved that HOCD (resp. RHOCD) method has the computational accuracy O(τ2+h4) (resp. O(τ4+h4)). This shows that RHOCD method improves the calculation accuracy of HOCD method in temporal direction. Moreover, we also analyze the stability of HOCD method and thus derive a global stability criterion of this method. Finally, with a series of numerical experiments, we further confirm the computational effectiveness and theoretical accuracy of the concerned methods.

Suggested Citation

  • Hou, Bo & Zhang, Chengjian, 2023. "A high-order compact difference method and its Richardson extrapolation for semi-linear reaction–diffusion equations with piecewise continuous argument in diffusion term," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 169-183.
  • Handle: RePEc:eee:matcom:v:210:y:2023:i:c:p:169-183
    DOI: 10.1016/j.matcom.2023.03.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423001180
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.03.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:210:y:2023:i:c:p:169-183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.