An efficient numerical approach for solving three-point Lane–Emden–Fowler boundary value problem
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2023.03.009
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mohsen Alipour & Dumitru Baleanu & Fereshteh Babaei, 2014. "Hybrid Bernstein Block-Pulse Functions Method for Second Kind Integral Equations with Convergence Analysis," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-8, February.
- Singh, Randhir & Guleria, Vandana & Singh, Mehakpreet, 2020. "Haar wavelet quasilinearization method for numerical solution of Emden–Fowler type equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 174(C), pages 123-133.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Swati, & Singh, Mandeep & Singh, Karanjeet, 2023. "An efficient technique based on higher order Haar wavelet method for Lane–Emden equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 21-39.
- Tomar, Saurabh & Dhama, Soniya & Ramos, Higinio & Singh, Mehakpreet, 2023. "An efficient technique based on Green’s function for solving two-point boundary value problems and its convergence analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 408-423.
- Ramos, Higinio & Rufai, Mufutau Ajani, 2022. "An adaptive pair of one-step hybrid block Nyström methods for singular initial-value problems of Lane–Emden–Fowler type," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 497-508.
- Shahni, Julee & Singh, Randhir, 2022. "Numerical simulation of Emden–Fowler integral equation with Green’s function type kernel by Gegenbauer-wavelet, Taylor-wavelet and Laguerre-wavelet collocation methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 430-444.
- Sriwastav, Nikhil & Barnwal, Amit K. & Ramos, Higinio & Agarwal, Ravi P. & Singh, Mehakpreet, 2024. "Advanced numerical scheme and its convergence analysis for a class of two-point singular boundary value problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 216(C), pages 30-48.
- Vikash Kumar Sinha & Prashanth Maroju, 2023. "New Development of Variational Iteration Method Using Quasilinearization Method for Solving Nonlinear Problems," Mathematics, MDPI, vol. 11(4), pages 1-11, February.
More about this item
Keywords
Three-point LEFBVPs; Chebyshev polynomials; Bernstein polynomials; Convergence analysis; Error estimation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:210:y:2023:i:c:p:1-16. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.