IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v206y2023icp264-285.html
   My bibliography  Save this article

Localized Chebyshev and MLS collocation methods for solving 2D steady state nonlocal diffusion and peridynamic equations

Author

Listed:
  • Zhang, Shangyuan
  • Nie, Yufeng

Abstract

The localized Chebyshev collocation method and MLS collocation method are presented to obtain the solution of two-dimensional nonlocal diffusion and peridynamic equations. The Chebyshev polynomial and MLS interpolation techniques are used to construct shape functions in the frame of the collocation method. Low computational cost and high accuracy are the main advantages of these two methods for solving nonlocal diffusion and peridynamic equations. Several numerical examples are provided to show the validity and applicability of the proposed method with the regular and irregular domains. Numerical experiments indicate that the localized Chebyshev collocation method has high accuracy for nonlocal problems with continuous solutions. The MLS collocation method is more efficient and can maintain good behavior for problems with discontinuous solutions.

Suggested Citation

  • Zhang, Shangyuan & Nie, Yufeng, 2023. "Localized Chebyshev and MLS collocation methods for solving 2D steady state nonlocal diffusion and peridynamic equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 264-285.
  • Handle: RePEc:eee:matcom:v:206:y:2023:i:c:p:264-285
    DOI: 10.1016/j.matcom.2022.11.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422004670
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.11.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Fajie & Zhao, Qinghai & Chen, Zengtao & Fan, Chia-Ming, 2021. "Localized Chebyshev collocation method for solving elliptic partial differential equations in arbitrary 2D domains," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    2. Zhao, Wei & Hon, Y.C. & Stoll, Martin, 2018. "Numerical simulations of nonlocal phase-field and hyperbolic nonlocal phase-field models via localized radial basis functions-based pseudo-spectral method (LRBF-PSM)," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 514-534.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jue Qu & Hongjun Xue & Yancheng Li & Yingbin Chai, 2022. "An Enriched Finite Element Method with Appropriate Interpolation Cover Functions for Transient Wave Propagation Dynamic Problems," Mathematics, MDPI, vol. 10(9), pages 1-12, April.
    2. Liang Zhang & Qinghai Zhao & Jianliang Chen, 2022. "Reliability-Based Topology Optimization of Thermo-Elastic Structures with Stress Constraint," Mathematics, MDPI, vol. 10(7), pages 1-22, March.
    3. Sun, Linlin & Fu, Zhuojia & Chen, Zhikang, 2023. "A localized collocation solver based on fundamental solutions for 3D time harmonic elastic wave propagation analysis," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    4. Li, Yang & Liu, Dejun & Yin, Zhexu & Chen, Yun & Meng, Jin, 2023. "Adaptive selection strategy of shape parameters for LRBF for solving partial differential equations," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    5. Xingxing Yue & Buwen Jiang & Xiaoxuan Xue & Chao Yang, 2022. "A Simple, Accurate and Semi-Analytical Meshless Method for Solving Laplace and Helmholtz Equations in Complex Two-Dimensional Geometries," Mathematics, MDPI, vol. 10(5), pages 1-9, March.
    6. Tingting Sun & Peng Wang & Guanjun Zhang & Yingbin Chai, 2022. "A Modified Radial Point Interpolation Method (M-RPIM) for Free Vibration Analysis of Two-Dimensional Solids," Mathematics, MDPI, vol. 10(16), pages 1-20, August.
    7. Nikan, O. & Avazzadeh, Z., 2021. "A localisation technique based on radial basis function partition of unity for solving Sobolev equation arising in fluid dynamics," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    8. Qiang Wang & Pyeoungkee Kim & Wenzhen Qu, 2022. "A Hybrid Localized Meshless Method for the Solution of Transient Groundwater Flow in Two Dimensions," Mathematics, MDPI, vol. 10(3), pages 1-14, February.
    9. Gábor Turzó & Ildikó-Renáta Száva & Sándor Dancsó & Ioan Száva & Sorin Vlase & Violeta Munteanu & Teofil Gălățanu & Zsolt Asztalos, 2022. "A New Approach in Heat Transfer Analysis: Reduced-Scale Straight Bars with Massive and Square-Tubular Cross-Sections," Mathematics, MDPI, vol. 10(19), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:206:y:2023:i:c:p:264-285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.