A novel hybrid technique to obtain the solution of generalized fractional-order differential equations
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2022.10.013
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- R. Yulita Molliq & M. S. M. Noorani, 2012. "Solving the Fractional Rosenau-Hyman Equation via Variational Iteration Method and Homotopy Perturbation Method," International Journal of Differential Equations, Hindawi, vol. 2012, pages 1-14, December.
- Hwajoon Kim, 2017. "The Intrinsic Structure and Properties of Laplace-Typed Integral Transforms," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-8, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Khirsariya, Sagar R. & Chauhan, Jignesh P. & Rao, Snehal B., 2024. "A robust computational analysis of residual power series involving general transform to solve fractional differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 216(C), pages 168-186.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hussam Aljarrah & Mohammad Alaroud & Anuar Ishak & Maslina Darus, 2022. "Approximate Solution of Nonlinear Time-Fractional PDEs by Laplace Residual Power Series Method," Mathematics, MDPI, vol. 10(12), pages 1-16, June.
- Mamta Kapoor & Nehad Ali Shah & Salman Saleem & Wajaree Weera, 2022. "An Analytical Approach for Fractional Hyperbolic Telegraph Equation Using Shehu Transform in One, Two and Three Dimensions," Mathematics, MDPI, vol. 10(12), pages 1-26, June.
- Yusuf, Abdullahi & Inc, Mustafa & Isa Aliyu, Aliyu & Baleanu, Dumitru, 2018. "Efficiency of the new fractional derivative with nonsingular Mittag-Leffler kernel to some nonlinear partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 220-226.
More about this item
Keywords
Fractional differential equation; Caputo fractional derivative; Homotopy perturbation method; General transform;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:205:y:2023:i:c:p:272-290. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.