IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v203y2023icp112-130.html
   My bibliography  Save this article

A Nitsche mixed extended finite element method for the biharmonic interface problem

Author

Listed:
  • Cai, Ying
  • Chen, Jinru
  • Wang, Nan

Abstract

In this paper, a Nitsche mixed extended finite element method based on Ciarlet–Raviart formulation is proposed to discretize the biharmonic interface problem with interface unfitted meshes. We present a discrete mixed approximate formulation based on the piecewise quadratic continuous finite element space. By adding a stabilization procedure, we get the discrete inf–sup condition and prove a suboptimal a priori error estimate for the discrete problem. If the solution of the dual problem satisfies the additional regularity condition, then an optimal a priori error estimate for stream variable under piecewise H1-norm is obtained. It is shown that all results are uniform with respect to the mesh size, and the location of the interface relative to the mesh. Finally, numerical experiments are carried out to demonstrate our theoretical results.

Suggested Citation

  • Cai, Ying & Chen, Jinru & Wang, Nan, 2023. "A Nitsche mixed extended finite element method for the biharmonic interface problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 112-130.
  • Handle: RePEc:eee:matcom:v:203:y:2023:i:c:p:112-130
    DOI: 10.1016/j.matcom.2022.06.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422002920
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.06.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Capatina, D. & El-Otmany, H. & Graebling, D. & Luce, R., 2017. "Extension of NXFEM to nonconforming finite elements," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 137(C), pages 226-245.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:203:y:2023:i:c:p:112-130. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.