IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v202y2022icp405-420.html
   My bibliography  Save this article

A curvilinear lattice Boltzmann scheme for thermal flows

Author

Listed:
  • Reyes Barraza, J.A.
  • Deiterding, R.

Abstract

Lattice Boltzmann schemes are known for their efficiency and low dissipation properties. However, the standard lattice Boltzmann method (LBM) is limited to Cartesian grids, and this approach can be troublesome when approximating thermal flows over curved walls. The present work proposes to solve the two-dimensional lattice Boltzmann equation under curvilinear coordinate transformation to simulate thermal flows with body-fitted grids. Several test cases are discussed, and the results are extensively compared with a very favourable outcome to the available numerical and experimental data, confirming the importance of the implemented methodology. Natural convection in a square cavity and a wavy cavity, as well as flow in a concentric cylindrical annulus are used for validation. Forced convection over a heated two-dimensional cylinder is also included.

Suggested Citation

  • Reyes Barraza, J.A. & Deiterding, R., 2022. "A curvilinear lattice Boltzmann scheme for thermal flows," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 405-420.
  • Handle: RePEc:eee:matcom:v:202:y:2022:i:c:p:405-420
    DOI: 10.1016/j.matcom.2022.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422002579
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McNamara, Guy & Alder, Berni, 1993. "Analysis of the lattice Boltzmann treatment of hydrodynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 194(1), pages 218-228.
    2. Chen, H. & Filippova, O. & Hoch, J. & Molvig, K. & Shock, R. & Teixeira, C. & Zhang, R., 2006. "Grid refinement in lattice Boltzmann methods based on volumetric formulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(1), pages 158-167.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Premnath, Kannan N. & Pattison, Martin J. & Banerjee, Sanjoy, 2009. "Dynamic subgrid scale modeling of turbulent flows using lattice-Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(13), pages 2640-2658.
    2. Foroughi, Sajjad & Jamshidi, Saeid & Masihi, Mohsen, 2013. "Lattice Boltzmann method on quadtree grids for simulating fluid flow through porous media: A new automatic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4772-4786.
    3. Machado, Raúl, 2012. "On pressure and corner boundary conditions with two lattice Boltzmann construction approaches," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 84(C), pages 26-41.
    4. Neumann, Philipp & Bungartz, Hans-Joachim, 2015. "Dynamically adaptive Lattice Boltzmann simulation of shallow water flows with the Peano framework," Applied Mathematics and Computation, Elsevier, vol. 267(C), pages 795-804.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:202:y:2022:i:c:p:405-420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.