IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v202y2022icp164-180.html
   My bibliography  Save this article

Unique non-negative definite solution of the time-varying algebraic Riccati equations with applications to stabilization of LTV systems

Author

Listed:
  • Simos, Theodore E.
  • Katsikis, Vasilios N.
  • Mourtas, Spyridon D.
  • Stanimirović, Predrag S.

Abstract

In the context of infinite-horizon optimal control problems, the algebraic Riccati equations (ARE) arise when the stability of linear time-varying (LTV) systems is investigated. Using the zeroing neural network (ZNN) approach to solve the time-varying eigendecomposition-based ARE (TVE-ARE) problem, the ZNN model (ZNNTVE-ARE) for solving the TVE-ARE problem is introduced as a result of this research. Since the eigendecomposition approach is employed, the ZNNTVE-ARE model is designed to produce only the unique nonnegative definite solution of the time-varying ARE (TV-ARE) problem. It is worth mentioning that this model follows the principles of the ZNN method, which converges exponentially with time to a theoretical time-varying solution. The ZNNTVE-ARE model can also produce the eigenvector solution of the continuous-time Lyapunov equation (CLE) since the Lyapunov equation is a particular case of ARE. Moreover, this paper introduces a hybrid ZNN model for stabilizing LTV systems in which the ZNNTVE-ARE model is employed to solve the continuous-time ARE (CARE) related to the optimal control law. Experiments show that the ZNNTVE-ARE and HFTZNN-LTVSS models are both effective, and that the HFTZNN-LTVSS model always provides slightly better asymptotic stability than the models from which it is derived.

Suggested Citation

  • Simos, Theodore E. & Katsikis, Vasilios N. & Mourtas, Spyridon D. & Stanimirović, Predrag S., 2022. "Unique non-negative definite solution of the time-varying algebraic Riccati equations with applications to stabilization of LTV systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 164-180.
  • Handle: RePEc:eee:matcom:v:202:y:2022:i:c:p:164-180
    DOI: 10.1016/j.matcom.2022.05.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422002452
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.05.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li Wang, 2020. "Numerical Algorithms of the Discrete Coupled Algebraic Riccati Equation Arising in Optimal Control Systems," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-8, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vladislav N. Kovalnogov & Ruslan V. Fedorov & Dmitry A. Generalov & Andrey V. Chukalin & Vasilios N. Katsikis & Spyridon D. Mourtas & Theodore E. Simos, 2022. "Portfolio Insurance through Error-Correction Neural Networks," Mathematics, MDPI, vol. 10(18), pages 1-14, September.
    2. Houssem Jerbi & Hadeel Alharbi & Mohamed Omri & Lotfi Ladhar & Theodore E. Simos & Spyridon D. Mourtas & Vasilios N. Katsikis, 2022. "Towards Higher-Order Zeroing Neural Network Dynamics for Solving Time-Varying Algebraic Riccati Equations," Mathematics, MDPI, vol. 10(23), pages 1-16, November.
    3. Liu, Yiqun & Zhuang, Guangming & Zhao, Junsheng & Lu, Junwei & Wang, Zekun, 2023. "H∞.. admissibilization for time-varying delayed nonlinear singular impulsive jump systems based on memory state-feedback control," Applied Mathematics and Computation, Elsevier, vol. 447(C).
    4. Spyridon D. Mourtas & Chrysostomos Kasimis, 2022. "Exploiting Mean-Variance Portfolio Optimization Problems through Zeroing Neural Networks," Mathematics, MDPI, vol. 10(17), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel De la Sen, 2022. "On the Stabilization of a Network of a Class of SISO Coupled Hybrid Linear Subsystems via Static Linear Output Feedback," Mathematics, MDPI, vol. 10(7), pages 1-29, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:202:y:2022:i:c:p:164-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.