IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v201y2022icp121-140.html
   My bibliography  Save this article

FEM solution to quadratic convective and radiative flow of Ag-MgO/H2O hybrid nanofluid over a rotating cone with Hall current: Optimization using Response Surface Methodology

Author

Listed:
  • Rana, Puneet
  • Gupta, Gaurav

Abstract

The nonlinear buoyancy-induced (quadratic convection) flow of water conveying hybrid nanoparticles (25 nm Ag and 40 nm MgO) around a revolving cone surface subjected to quadratic radiative heat transfer is studied, taking into deliberation of Hall current, and thermal jump condition. The quadratic form of Boussinesq approximation (QBA) with quadratic Rosseland thermal radiation (QRTR) is employed to model the problem. Esfe models for thermal conductivity and dynamic viscosity with a volumetric fraction of nanoparticles (50% MgO and 50% Ag) are used. The effective medium correlations for heat capacitance, thermal expansion factor, and density of Ag-MgO/water hybrid nanofluid are used. The governing equations are solved by using the Finite element method (FEM). The effects of parameters on the shear stress and heat transport of the system are scrutinized using the friction factors and Nusselt number through two-dimensional contour and three-dimensional surface plots. The friction factor and the heat transport rate are optimized using the Response Surface Method (RSM) and the optimal level of intensity of the magnetic field, radiation, and thermal slip is determined. Because of the influence of hybrid nanoparticles, the heat transport rate is observed to be the highest. When compared to Linear Rosseland Thermal Radiation (LRTR), the Nusselt number for QRTR is found to be the highest. Furthermore, at a low level of Ts and a high level of Ha and Rd, maximum heat transport (2.42951) and minimum shear stress (1.07598) are achieved with a desirability of 0.797.

Suggested Citation

  • Rana, Puneet & Gupta, Gaurav, 2022. "FEM solution to quadratic convective and radiative flow of Ag-MgO/H2O hybrid nanofluid over a rotating cone with Hall current: Optimization using Response Surface Methodology," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 121-140.
  • Handle: RePEc:eee:matcom:v:201:y:2022:i:c:p:121-140
    DOI: 10.1016/j.matcom.2022.05.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422002002
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.05.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mamourian, Mojtaba & Milani Shirvan, Kamel & Mirzakhanlari, Soroush, 2016. "Two phase simulation and sensitivity analysis of effective parameters on turbulent combined heat transfer and pressure drop in a solar heat exchanger filled with nanofluid by Response Surface Methodol," Energy, Elsevier, vol. 109(C), pages 49-61.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alsarraf, Jalal & Moradikazerouni, Alireza & Shahsavar, Amin & Afrand, Masoud & Salehipour, Hamzeh & Tran, Minh Duc, 2019. "Hydrothermal analysis of turbulent boehmite alumina nanofluid flow with different nanoparticle shapes in a minichannel heat exchanger using two-phase mixture model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 275-288.
    2. Tgarguifa, Ahmed & Abderafi, Souad & Bounahmidi, Tijani, 2017. "Energetic optimization of Moroccan distillery using simulation and response surface methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 415-425.
    3. Zhen Zhao & Liang Xu & Jianmin Gao & Lei Xi & Qicheng Ruan & Yunlong Li, 2022. "Multi-Objective Optimization of Parameters of Channels with Staggered Frustum of a Cone Based on Response Surface Methodology," Energies, MDPI, vol. 15(3), pages 1-19, February.
    4. Milani Shirvan, Kamel & Mirzakhanlari, Soroush & Mamourian, Mojtaba & Kalogirou, Soteris A., 2017. "Optimization of effective parameters on solar updraft tower to achieve potential maximum power output: A sensitivity analysis and numerical simulation," Applied Energy, Elsevier, vol. 195(C), pages 725-737.
    5. Minea, Alina Adriana, 2017. "Challenges in hybrid nanofluids behavior in turbulent flow: Recent research and numerical comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 426-434.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:201:y:2022:i:c:p:121-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.