IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v195y2022icp88-106.html
   My bibliography  Save this article

A uniformly convergent quadratic B-spline based scheme for singularly perturbed degenerate parabolic problems

Author

Listed:
  • Singh, Satpal
  • Kumar, Devendra
  • Ramos, Higinio

Abstract

In this article, a numerical scheme is developed to solve singularly perturbed convection–diffusion type degenerate parabolic problems. The degenerative nature of the problem is due to the coefficient b(x,t)=b0(x,t)xp,p≥1 of the convection term. As the perturbation parameter approaches zero, the solution to this problem exhibits a parabolic boundary layer in the neighborhood of the left end side of the domain. The problem is semi-discretized using the Crank–Nicolson scheme, and then the quadratic spline basis functions are used to discretize the semi-discrete problem. A priori bounds for the solution (and its derivatives) of the continuous problem are given, which are necessary to analyze the error. A rigorous error analysis shows that the proposed method is boundary layer resolving and second-order parameter uniformly convergent. Some numerical experiments have been devised to support the theoretical findings and the effectiveness of the proposed scheme.

Suggested Citation

  • Singh, Satpal & Kumar, Devendra & Ramos, Higinio, 2022. "A uniformly convergent quadratic B-spline based scheme for singularly perturbed degenerate parabolic problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 195(C), pages 88-106.
  • Handle: RePEc:eee:matcom:v:195:y:2022:i:c:p:88-106
    DOI: 10.1016/j.matcom.2021.12.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475421004602
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.12.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Natesan & M. Ramanujam, 1998. "Initial-Value Technique for Singularly-Perturbed Turning-Point Problems Exhibiting Twin Boundary Layers," Journal of Optimization Theory and Applications, Springer, vol. 99(1), pages 37-52, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, Satpal & Kumar, Devendra, 2023. "Parameter uniform numerical method for a system of singularly perturbed parabolic convection–diffusion equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 360-381.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Valanarasu & N. Ramanujam, 2007. "Asymptotic Initial-Value Method for Second-Order Singular Perturbation Problems of Reaction-Diffusion Type with Discontinuous Source Term," Journal of Optimization Theory and Applications, Springer, vol. 133(3), pages 371-383, June.
    2. T. Valanarasu & N. Ramanujan, 2003. "Asymptotic Initial-Value Method for Singularly-Perturbed Boundary-Value Problems for Second-Order Ordinary Differential Equations," Journal of Optimization Theory and Applications, Springer, vol. 116(1), pages 167-182, January.
    3. Majumdar, Anirban & Natesan, Srinivasan, 2017. "Alternating direction numerical scheme for singularly perturbed 2D degenerate parabolic convection-diffusion problems," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 453-473.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:195:y:2022:i:c:p:88-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.