IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v194y2022icp610-628.html
   My bibliography  Save this article

Disturbance observer-based sliding mode control for consensus tracking of chaotic nonlinear multi-agent systems

Author

Listed:
  • Derakhshannia, Mehran
  • Moosapour, Seyyed Sajjad

Abstract

This paper deals with the finite-time consensus of chaotic MIMO nonlinear heterogeneous multi-agent systems subjected to matched uncertainties and disturbances. This study proposes a consensus protocol utilizing a novel dynamic sliding mode control, ensuring robust performance and chattering attenuation. For this purpose, firstly, a new time-varying nonlinear sliding manifold is introduced that guarantees exponential finite-time stability. Secondly, a novel reaching law is established that ensures fixed reaching time independent of initial conditions. The fixed reaching time enables the specification of the reaching time by considering the problem constraints. Then, a novel terminal disturbance observer is proposed to efficiently estimate the overall effect of uncertainties and disturbances in the finite-time. Finally, an adaptive form of the proposed controller is presented by incorporating the disturbance observer into the proposed sliding mode control. The proposed consensus protocols are applied to a multi-agent system consisting of two well-known chaotic power systems (PMSM and BLDCM). Computer simulations and comparative studies confirm the results of this study in terms of tracking errors and fast convergence.

Suggested Citation

  • Derakhshannia, Mehran & Moosapour, Seyyed Sajjad, 2022. "Disturbance observer-based sliding mode control for consensus tracking of chaotic nonlinear multi-agent systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 610-628.
  • Handle: RePEc:eee:matcom:v:194:y:2022:i:c:p:610-628
    DOI: 10.1016/j.matcom.2021.12.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475421004511
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.12.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lavanya, S. & Nagarani, S., 2022. "Leader-following consensus of multi-agent systems with sampled-data control and looped functionals," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 120-133.
    2. Yacine, Zedjiga & Hamiche, Hamid & Djennoune, Saïd & Mammar, Saïd, 2022. "Finite-time impulsive observers for nonlinear systems represented by Takagi–Sugeno models: Application to a chaotic system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 321-352.
    3. Yang Fei & Peng Shi & Cheng-Chew Lim, 2020. "Neural network adaptive dynamic sliding mode formation control of multi-agent systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 51(11), pages 2025-2040, July.
    4. Wang, Cong & Zhang, Hongli & Fan, Wenhui & Ma, Ping, 2018. "Adaptive control method for chaotic power systems based on finite-time stability theory and passivity-based control approach," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 159-167.
    5. Yaghoubi, Zahra, 2020. "Robust cluster consensus of general fractional-order nonlinear multi agent systems via adaptive sliding mode controller," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 15-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rezaei, Vahid & Khanmirza, Esmaeel, 2024. "Continuous-time min-max consensus protocol: A unified approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 292-310.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sweetha, S. & Sakthivel, R. & Harshavarthini, S., 2021. "Finite-time synchronization of nonlinear fractional chaotic systems with stochastic actuator faults," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Takhi, Hocine & Kemih, Karim & Moysis, Lazaros & Volos, Christos, 2021. "Passivity based sliding mode control and synchronization of a perturbed uncertain unified chaotic system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 150-169.
    3. Wang, Cong & Zhang, Hong-li & Fan, Wen-hui & Ma, Ping, 2020. "Finite-time function projective synchronization control method for chaotic wind power systems," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    4. Rezaei, Vahid & Khanmirza, Esmaeel, 2024. "Continuous-time min-max consensus protocol: A unified approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 292-310.
    5. Wu, Jie & Xu, Wei & Wang, Xiaofeng & Ma, Ru-ru, 2021. "Stochastic adaptive fixed-time stabilization of chaotic systems with applications in PMSM and FWS," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    6. J. Humberto Pérez-Cruz, 2018. "Stabilization and Synchronization of Uncertain Zhang System by Means of Robust Adaptive Control," Complexity, Hindawi, vol. 2018, pages 1-19, December.
    7. El-Bidairi, Kutaiba S. & Nguyen, Hung Duc & Mahmoud, Thair S. & Jayasinghe, S.D.G. & Guerrero, Josep M., 2020. "Optimal sizing of Battery Energy Storage Systems for dynamic frequency control in an islanded microgrid: A case study of Flinders Island, Australia," Energy, Elsevier, vol. 195(C).
    8. Cao, Qian & Wei, Du Qu, 2023. "Dynamic surface sliding mode control of chaos in the fourth-order power system," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    9. Bekiros, Stelios & Yao, Qijia & Mou, Jun & Alkhateeb, Abdulhameed F. & Jahanshahi, Hadi, 2023. "Adaptive fixed-time robust control for function projective synchronization of hyperchaotic economic systems with external perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:194:y:2022:i:c:p:610-628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.