IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v193y2022icp204-216.html
   My bibliography  Save this article

Finite difference method for solving fractional differential equations at irregular meshes

Author

Listed:
  • Vargas, Antonio M.

Abstract

This paper presents a novel meshless technique for solving a class of fractional differential equations based on moving least squares and on the existence of a fractional Taylor series for Caputo derivatives. A “Generalized Finite Difference” approach is followed in order to derive a simple discretization of the space fractional derivatives. Consistency, stability and convergence of the method are proved. Several examples illustrating the accuracy of the method are given.

Suggested Citation

  • Vargas, Antonio M., 2022. "Finite difference method for solving fractional differential equations at irregular meshes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 204-216.
  • Handle: RePEc:eee:matcom:v:193:y:2022:i:c:p:204-216
    DOI: 10.1016/j.matcom.2021.10.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847542100361X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.10.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salehi, Younes & Darvishi, Mohammad T. & Schiesser, William E., 2018. "Numerical solution of space fractional diffusion equation by the method of lines and splines," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 465-480.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heydari, M.H. & Razzaghi, M. & Rouzegar, J., 2022. "Chebyshev cardinal polynomials for delay distributed-order fractional fourth-order sub-diffusion equation," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Li, Jin & Su, Xiaoning & Zhao, Kaiyan, 2023. "Barycentric interpolation collocation algorithm to solve fractional differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 340-367.
    3. Yang, Changqing, 2023. "Improved spectral deferred correction methods for fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darvishi, M.T. & Najafi, Mohammad & Wazwaz, Abdul-Majid, 2021. "Conformable space-time fractional nonlinear (1+1)-dimensional Schrödinger-type models and their traveling wave solutions," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Linli Wang & Jingli Fu & Liangliang Li, 2023. "Fractional Hamilton’s Canonical Equations and Poisson Theorem of Mechanical Systems with Fractional Factor," Mathematics, MDPI, vol. 11(8), pages 1-13, April.
    3. Chaudhary, Manish & Kumar, Rohit & Singh, Mritunjay Kumar, 2020. "Fractional convection-dispersion equation with conformable derivative approach," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Kholoud Saad Albalawi & Ibtehal Alazman & Jyoti Geetesh Prasad & Pranay Goswami, 2023. "Analytical Solution of the Local Fractional KdV Equation," Mathematics, MDPI, vol. 11(4), pages 1-13, February.
    5. Liu, Lu & Xue, Dingyu & Zhang, Shuo, 2019. "Closed-loop time response analysis of irrational fractional-order systems with numerical Laplace transform technique," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 133-152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:193:y:2022:i:c:p:204-216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.