An almost second order hybrid scheme for the numerical solution of singularly perturbed parabolic turning point problem with interior layer
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2021.01.017
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Munyakazi, Justin B. & Patidar, Kailash C. & Sayi, Mbani T., 2019. "A robust fitted operator finite difference method for singularly perturbed problems whose solution has an interior layer," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 160(C), pages 155-167.
- Yadav, Swati & Rai, Pratima, 2020. "A higher order numerical scheme for singularly perturbed parabolic turning point problems exhibiting twin boundary layers," Applied Mathematics and Computation, Elsevier, vol. 376(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sahoo, Sanjay Ku & Gupta, Vikas, 2023. "An almost second-order robust computational technique for singularly perturbed parabolic turning point problem with an interior layer," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 192-213.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kumar, Sunil & Sumit, & Vigo-Aguiar, Jesus, 2022. "A high order convergent numerical method for singularly perturbed time dependent problems using mesh equidistribution," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 199(C), pages 287-306.
- Sahoo, Sanjay Ku & Gupta, Vikas, 2023. "An almost second-order robust computational technique for singularly perturbed parabolic turning point problem with an interior layer," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 192-213.
- Yadav, Swati & Rai, Pratima, 2023. "A parameter uniform higher order scheme for 2D singularly perturbed parabolic convection–diffusion problem with turning point," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 507-531.
- Abraham J. Arenas & Gilberto González-Parra & Jhon J. Naranjo & Myladis Cogollo & Nicolás De La Espriella, 2021. "Mathematical Analysis and Numerical Solution of a Model of HIV with a Discrete Time Delay," Mathematics, MDPI, vol. 9(3), pages 1-21, January.
- Liu, Chein-Shan & Li, Botong, 2021. "Solving a singular beam equation by the method of energy boundary functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 419-435.
More about this item
Keywords
Singular perturbation; Parabolic differential equations; Interior boundary layer; Turning point; Hybrid scheme; Shishkin mesh;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:185:y:2021:i:c:p:733-753. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.