IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v185y2021icp308-324.html
   My bibliography  Save this article

Closed-form estimators and bias-corrected estimators for the Nakagami distribution

Author

Listed:
  • Zhao, Jun
  • Kim, SungBum
  • Kim, Hyoung-Moon

Abstract

The Nakagami distribution is widely applied in various areas such as communicational engineering, medical imaging, multimedia, among others. New MLE-like estimators in closed-form are proposed for the Nakagami parameters through the likelihood function of the generalized Nakagami distribution, which contains the Nakagami distribution as a special case. For the MLE-like estimators of the Nakagami distribution, the scale parameter (ω) estimator is the same as its maximum likelihood estimator (MLE) and the shape parameter (μ) estimator performs close to the corresponding MLE. Strong consistency and asymptotic normality of the MLE-like estimators are confirmed in large-size samples. To reduce the bias in the samples with small sizes, four bias-corrected estimators of the shape parameter (μˆBC1, μˆBC2, μˆBC3, and μˆBC4) are developed based on its MLE-like estimator. The second bias-corrected estimator μˆBC2 is asymptotically unbiased and consequently, the third one μˆBC3 and fourth one μˆBC4 are also asymptotically unbiased because they are the approximations of the μˆBC2. Simulation studies and a real data example suggest that four bias-corrected estimators, especially the latter three, significantly improve the small-sample performance.

Suggested Citation

  • Zhao, Jun & Kim, SungBum & Kim, Hyoung-Moon, 2021. "Closed-form estimators and bias-corrected estimators for the Nakagami distribution," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 308-324.
  • Handle: RePEc:eee:matcom:v:185:y:2021:i:c:p:308-324
    DOI: 10.1016/j.matcom.2020.12.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475420304912
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.12.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francisco Louzada & Pedro L. Ramos & Eduardo Ramos, 2019. "A Note on Bias of Closed-Form Estimators for the Gamma Distribution Derived From Likelihood Equations," The American Statistician, Taylor & Francis Journals, vol. 73(2), pages 195-199, April.
    2. Zhi-Sheng Ye & Nan Chen, 2017. "Closed-Form Estimators for the Gamma Distribution Derived From Likelihood Equations," The American Statistician, Taylor & Francis Journals, vol. 71(2), pages 177-181, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Jun & Jang, Yu-Hyeong & Kim, Hyoung-Moon, 2022. "Closed-form and bias-corrected estimators for the bivariate gamma distribution," Journal of Multivariate Analysis, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Hui & Tang, Junyi & Zhang, Zhiwei & Wang, Zhuo & Wei, Ruizeng & Wang, Lei & He, Huan & Wu, Xixiu, 2023. "Resilience enhancement of distribution network under typhoon disaster based on two-stage stochastic programming," Applied Energy, Elsevier, vol. 338(C).
    2. Zhao, Jun & Jang, Yu-Hyeong & Kim, Hyoung-Moon, 2022. "Closed-form and bias-corrected estimators for the bivariate gamma distribution," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    3. Victor Mooto Nawa & Saralees Nadarajah, 2023. "New Closed Form Estimators for the Beta Distribution," Mathematics, MDPI, vol. 11(13), pages 1-20, June.
    4. Tin Lok James Ng & Thomas Brendan Murphy, 2021. "Weighted stochastic block model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1365-1398, December.
    5. Bruzda, Joanna, 2020. "Demand forecasting under fill rate constraints—The case of re-order points," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1342-1361.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:185:y:2021:i:c:p:308-324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.