IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v182y2021icp661-689.html
   My bibliography  Save this article

Study on the dynamics of a nonlinear dispersion model in both 1D and 2D based on the fourth-order compact conservative difference scheme

Author

Listed:
  • Dimitrienko, Yu.I.
  • Li, Shuguang
  • Niu, Yi

Abstract

In this paper, the nonlinear dispersion wave model in both 1D and 2D is studied by the compact finite difference method, which is called the generalized Rosenau–RLW equation. A fourth-order compact three-level and linearized difference scheme that maintains the original conservative properties of equation is proposed. The discrete mass conservation and discrete energy conservation of compact difference scheme are obtained. The solvability of numerical scheme is obtained. By using the discrete energy method, convergence and unconditional stability can also be obtained without relying on the grid ratio, and the optimal error estimates in the L∞ norm are fourth-order and second-order accuracy for the spatial and temporal step sizes, respectively. The scheme is conservative so can be used for long time computation. Numerical experiment results show that the theory is accurate and the method is efficient and reliable. Finally, the new numerical scheme is used to study the nonlinear dynamic of 1D generalized Rosenau–RLW equation and the wave interference of 2D generalized Rosenau–RLW equation, focusing on the influence of nonlinear convection term on the wave and the conservation of wave propagation.

Suggested Citation

  • Dimitrienko, Yu.I. & Li, Shuguang & Niu, Yi, 2021. "Study on the dynamics of a nonlinear dispersion model in both 1D and 2D based on the fourth-order compact conservative difference scheme," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 661-689.
  • Handle: RePEc:eee:matcom:v:182:y:2021:i:c:p:661-689
    DOI: 10.1016/j.matcom.2020.11.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475420304067
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.11.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jinsong Hu & Yulan Wang, 2013. "A High-Accuracy Linear Conservative Difference Scheme for Rosenau-RLW Equation," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-8, November.
    2. Wongsaijai, B. & Mouktonglang, T. & Sukantamala, N. & Poochinapan, K., 2019. "Compact structure-preserving approach to solitary wave in shallow water modeled by the Rosenau-RLW equation," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 84-100.
    3. Wang, Xiaofeng & Dai, Weizhong & Guo, Shuangbing, 2019. "A conservative linear difference scheme for the 2D regularized long-wave equation," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 55-70.
    4. Xintian Pan & Luming Zhang, 2012. "Numerical Simulation for General Rosenau-RLW Equation: An Average Linearized Conservative Scheme," Mathematical Problems in Engineering, Hindawi, vol. 2012, pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mouktonglang, Thanasak & Yimnet, Suriyon & Sukantamala, Nattakorn & Wongsaijai, Ben, 2022. "Dynamical behaviors of the solution to a periodic initial–boundary value problem of the generalized Rosenau-RLW-Burgers equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 114-136.
    2. Poochinapan, Kanyuta & Wongsaijai, Ben, 2023. "High-performance computing of structure-preserving algorithm for the coupled BBM system formulated by weighted compact difference operators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 439-467.
    3. Poochinapan, Kanyuta & Wongsaijai, Ben, 2022. "Numerical analysis for solving Allen-Cahn equation in 1D and 2D based on higher-order compact structure-preserving difference scheme," Applied Mathematics and Computation, Elsevier, vol. 434(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wongsaijai, Ben & Poochinapan, Kanyuta, 2021. "Optimal decay rates of the dissipative shallow water waves modeled by coupling the Rosenau-RLW equation and the Rosenau-Burgers equation with power of nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    2. Zakieh Avazzadeh & Omid Nikan & José A. Tenreiro Machado, 2020. "Solitary Wave Solutions of the Generalized Rosenau-KdV-RLW Equation," Mathematics, MDPI, vol. 8(9), pages 1-20, September.
    3. Khater, Mostafa M.A., 2023. "Computational simulations of propagation of a tsunami wave across the ocean," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Poochinapan, Kanyuta & Wongsaijai, Ben, 2023. "High-performance computing of structure-preserving algorithm for the coupled BBM system formulated by weighted compact difference operators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 439-467.
    5. Wongsaijai, B. & Oonariya, C. & Poochinapan, K., 2020. "Compact structure-preserving algorithm with high accuracy extended to the improved Boussinesq equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 125-150.
    6. Poochinapan, Kanyuta & Wongsaijai, Ben, 2022. "Numerical analysis for solving Allen-Cahn equation in 1D and 2D based on higher-order compact structure-preserving difference scheme," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    7. Wang, Xiaofeng & Dai, Weizhong & Guo, Shuangbing, 2021. "Corrigendum to “A conservative linear difference scheme for the 2D regularized long-wave equation” [Appl. Math. Comput. 342 (2019) 55–70]," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    8. Mouktonglang, Thanasak & Yimnet, Suriyon & Sukantamala, Nattakorn & Wongsaijai, Ben, 2022. "Dynamical behaviors of the solution to a periodic initial–boundary value problem of the generalized Rosenau-RLW-Burgers equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 114-136.
    9. Rouatbi, Asma & Omrani, Khaled, 2021. "Comments on the paper ”A conservative linear difference scheme for the 2D regularized long-wave equation”, by Xiaofeng Wang, Weizhong Dai and Shuangbing Guo [Applied Mathematics and Computation, 342 (," Applied Mathematics and Computation, Elsevier, vol. 410(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:182:y:2021:i:c:p:661-689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.