IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v180y2021icp129-151.html
   My bibliography  Save this article

Analytic approximate solutions of the cubic–quintic Duffing–van​ der Pol equation with two-external periodic forcing terms: Stability analysis

Author

Listed:
  • Ghaleb, A.F.
  • Abou-Dina, M.S.
  • Moatimid, G.M.
  • Zekry, M.H.

Abstract

In the light of the potential applications in engineering, electronics, physics, chemistry, and biology, the current work applies several techniques to achieve analytic approximate and numerical solutions of the cubic–quintic Duffing–van der Pol equation. This equation represents a second-order ordinary differential equation with quintic nonlinearity and includes two external periodic forcing terms. A classical approximate solution involves the secular terms is obtained. Unfortunately, this traditional method does not enable us to ignore these secular terms. Additionally, along with the concept of the expanded frequency, a bounded approximate solution is achieved. The Homotopy perturbation method is utilized to obtain an approximate solution with an artificial frequency of the given system. Near the equilibrium points, in the case of the autonomous system, the linearized stability is accomplished. Furthermore, in the case of the non-autonomous system, by means of the multiple time scales, the stability analysis is effectuated, together with the resonance and the non-resonance cases. Numerical computations are performed to demonstrate, graphically, the perturbed solutions as well as the stability/instability regions. Various numerical solutions to initial–boundary value problems are deduced via a three-step finite difference scheme. These are plotted and discussed to show the chaotic nature of solutions.

Suggested Citation

  • Ghaleb, A.F. & Abou-Dina, M.S. & Moatimid, G.M. & Zekry, M.H., 2021. "Analytic approximate solutions of the cubic–quintic Duffing–van​ der Pol equation with two-external periodic forcing terms: Stability analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 129-151.
  • Handle: RePEc:eee:matcom:v:180:y:2021:i:c:p:129-151
    DOI: 10.1016/j.matcom.2020.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475420302664
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sandile S. Motsa & Precious Sibanda, 2012. "A Note on the Solutions of the Van der Pol and Duffing Equations Using a Linearisation Method," Mathematical Problems in Engineering, Hindawi, vol. 2012, pages 1-10, September.
    2. Hradyesh Kumar Mishra & Atulya K. Nagar, 2012. "He-Laplace Method for Linear and Nonlinear Partial Differential Equations," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Ji-Huan & Jiao, Man-Li & Gepreel, Khaled A. & Khan, Yasir, 2023. "Homotopy perturbation method for strongly nonlinear oscillators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 243-258.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:180:y:2021:i:c:p:129-151. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.