IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v177y2020icp244-262.html
   My bibliography  Save this article

Higher order sliding mode STATCOM control for power system stability improvement

Author

Listed:
  • Halder, Asim
  • Pal, Nitai
  • Mondal, Debasish

Abstract

The objective of this research is to design a higher order Sliding Mode Controller (SMC) for a Static Synchronous Compensator (STATCOM) and investigation of its implication on power system stability improvement. The theory of Super-Twisting–Sliding-Mode-Control (STSMC) is applied to determine the nonlinear control law of a STATCOM. The STSMC based control combines 2-sliding control and Robust Exact Differentiator (RED) which can efficiently mitigate the effect of external disturbance to the system The purpose of the application of the STSMC based control method is that it not only solves the chattering problem of classical SMC but also the derived control law is independent of system parameters. The efficacy of the design of the proposed STATCOM controller has been investigated in comparison to both the nonlinear (via exact linearization) and conventional (via approximate linearization) Linear Quadratic Regulator (LQR) based STATCOM controller. An IEEE type 14 bus multi-machine system has been taken into consideration to study the simulation results with regard to the transient stability improvement in multiple operating scenarios. It has been revealed from the simulation results that the proposed control scheme based on STSMC is more effective with respect to both the exact linearization based as well as approximately linearization based approach for the design of STATCOM controller. Furthermore, it has been abstracted that the STSMC based nonlinear STATCOM controller is competent to mitigate the dynamic instability of an electric power system even under contingency and different loading conditions.

Suggested Citation

  • Halder, Asim & Pal, Nitai & Mondal, Debasish, 2020. "Higher order sliding mode STATCOM control for power system stability improvement," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 244-262.
  • Handle: RePEc:eee:matcom:v:177:y:2020:i:c:p:244-262
    DOI: 10.1016/j.matcom.2020.04.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475420301592
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.04.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Yin Lee & Renuga Verayiah & Kam Hoe Ong & Agileswari K. Ramasamy & Marayati Binti Marsadek, 2020. "Distributed Generation: A Review on Current Energy Status, Grid-Interconnected PQ Issues, and Implementation Constraints of DG in Malaysia," Energies, MDPI, vol. 13(24), pages 1-40, December.
    2. Hollweg, Guilherme Vieira & Evald, Paulo Jefferson Dias de Oliveira & Milbradt, Deise Maria Cirolini & Tambara, Rodrigo Varella & Gründling, Hilton Abílio, 2022. "Design of continuous-time model reference adaptive and super-twisting sliding mode controller," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 215-238.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:177:y:2020:i:c:p:244-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.