A general method of computing mixed Poisson probabilities by Monte Carlo sampling
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2019.09.003
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Karlis, Dimitris, 2005. "EM Algorithm for Mixed Poisson and Other Discrete Distributions," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 3-24, May.
- S. H. Ong & P. A. Lee, 1985. "On the bivariate negative binomial distribution of mitchell and paulson," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 32(3), pages 457-465, August.
- Goro Ishii & Reiko Hayakawa, 1960. "On the compound binomial distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 12(1), pages 69-80, February.
- R. C. H. Cheng, 1977. "The Generation of Gamma Variables with Non‐Integral Shape Parameter," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 26(1), pages 71-75, March.
- M. Holla, 1967. "On a poisson-inverse gaussian distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 11(1), pages 115-121, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sedighizadeh, Davoud & Masehian, Ellips & Sedighizadeh, Mostafa & Akbaripour, Hossein, 2021. "GEPSO: A new generalized particle swarm optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 194-212.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Korolev, Victor & Zeifman, Alexander, 2021. "Bounds for convergence rate in laws of large numbers for mixed Poisson random sums," Statistics & Probability Letters, Elsevier, vol. 168(C).
- David Peter Michael Scollnik, 2017. "Bayesian Inference for Three Bivariate Beta Binomial Models," The Open Statistics and Probability Journal, Bentham Open, vol. 8(1), pages 27-38, October.
- Bibby, Bo Martin & Væth, Michael, 2011. "The two-dimensional beta binomial distribution," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 884-891, July.
- Gómez-Déniz, E. & Pérez-Rodríguez, J.V., 2019. "Modelling bimodality of length of tourist stay," Annals of Tourism Research, Elsevier, vol. 75(C), pages 131-151.
- Xiao Li & Michele Guindani & Chaan S. Ng & Brian P. Hobbs, 2021. "A Bayesian nonparametric model for textural pattern heterogeneity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 459-480, March.
- Katerina M. David & H. Papageorgiou, 1994. "On compounded bivariate poisson distributions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(2), pages 203-214, March.
- Chan, Jennifer So Kuen & Wan, Wai Yin, 2014. "Multivariate generalized Poisson geometric process model with scale mixtures of normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 72-87.
- Jussiane Nader Gonçalves & Wagner Barreto-Souza, 2020. "Flexible regression models for counts with high-inflation of zeros," METRON, Springer;Sapienza Università di Roma, vol. 78(1), pages 71-95, April.
- Sunisa Junnumtuam & Sa-Aat Niwitpong & Suparat Niwitpong, 2022. "A Zero-and-One Inflated Cosine Geometric Distribution and Its Application," Mathematics, MDPI, vol. 10(21), pages 1-22, October.
- Tzougas, George & Hoon, W. L. & Lim, J. M., 2019. "The negative binomial-inverse Gaussian regression model with an application to insurance ratemaking," LSE Research Online Documents on Economics 101728, London School of Economics and Political Science, LSE Library.
- Peter Congdon, 2020. "Geographical Aspects of Recent Trends in Drug-Related Deaths, with a Focus on Intra-National Contextual Variation," IJERPH, MDPI, vol. 17(21), pages 1-18, November.
- George Tzougas, 2020. "EM Estimation for the Poisson-Inverse Gamma Regression Model with Varying Dispersion: An Application to Insurance Ratemaking," Risks, MDPI, vol. 8(3), pages 1-23, September.
- Zhu, Rong & Joe, Harry, 2009. "Modelling heavy-tailed count data using a generalised Poisson-inverse Gaussian family," Statistics & Probability Letters, Elsevier, vol. 79(15), pages 1695-1703, August.
- Fernández, C. & Steel, M.F.J., 1996.
"On Bayesian Modelling of Fat Tails and Skewness,"
Other publications TiSEM
0991c197-c9e8-4904-8119-3, Tilburg University, School of Economics and Management.
- Fernández, C. & Steel, M.F.J., 1996. "On Bayesian Modelling of Fat Tails and Skewness," Discussion Paper 1996-58, Tilburg University, Center for Economic Research.
- Veraart, Almut E.D., 2019. "Modeling, simulation and inference for multivariate time series of counts using trawl processes," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 110-129.
- Tzougas, George & Karlis, Dimitris, 2020. "An EM algorithm for fitting a new class of mixed exponential regression models with varying dispersion," LSE Research Online Documents on Economics 104027, London School of Economics and Political Science, LSE Library.
- Martel-Escobar, M. & Hernández-Bastida, A. & Vázquez-Polo, F.J., 2012. "On the independence between risk profiles in the compound collective risk actuarial model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(8), pages 1419-1431.
- Kimberly S. Weems & Paul J. Smith, 2018. "Assessing the robustness of estimators when fitting Poisson inverse Gaussian models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(8), pages 985-1004, November.
- Hisashi Tanizaki, 2008. "A Simple Gamma Random Number Generator for Arbitrary Shape Parameters," Economics Bulletin, AccessEcon, vol. 3(7), pages 1-10.
- Chen, Roger B., 2018. "Models of count with endogenous choices," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 862-875.
More about this item
Keywords
Gamma distribution; Poisson–lognormal; Species abundance; Variance reduction; Quasi-Monte Carlo; EM algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:170:y:2020:i:c:p:98-106. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.