IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v156y2019icp143-157.html
   My bibliography  Save this article

Exponential stability of impulsive complex-valued neural networks with time delay

Author

Listed:
  • Wang, Zengyun
  • Liu, Xinzhi

Abstract

This paper studies the stability problem of impulsive complex-valued neural networks with time delay. Firstly, impulses are viewed as disturbance. Criteria on uniqueness and global exponential stability of equilibrium point are established using the Lyapunov function method. A modified version of Halanay-type inequality is used to make the results in Song et al. (2016) much better. Secondly, impulses are used as control input. Sufficient conditions are derived to ensure the exponential stability of the equilibrium point by using the Razumikhin technique. This result explains the dynamics of example 2 in Song et al. (2016), which does not give any theoretical result on impulsive control problem. Two numerical examples are presented to demonstrate the effectiveness of the theorems.

Suggested Citation

  • Wang, Zengyun & Liu, Xinzhi, 2019. "Exponential stability of impulsive complex-valued neural networks with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 156(C), pages 143-157.
  • Handle: RePEc:eee:matcom:v:156:y:2019:i:c:p:143-157
    DOI: 10.1016/j.matcom.2018.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475418301903
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2018.07.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Rongjiang & Wu, Bo & Liu, Yang, 2015. "A Halanay-type inequality approach to the stability analysis of discrete-time neural networks with delays," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 696-707.
    2. Tao Fang & Jitao Sun, 2013. "Stability Analysis of Complex-Valued Nonlinear Differential System," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-7, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Chunmei & Han, Bang-Sheng, 2020. "Stability analysis of stochastic delayed complex networks with multi-weights based on Razumikhin technique and graph theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    2. Pharunyou Chanthorn & Grienggrai Rajchakit & Jenjira Thipcha & Chanikan Emharuethai & Ramalingam Sriraman & Chee Peng Lim & Raja Ramachandran, 2020. "Robust Stability of Complex-Valued Stochastic Neural Networks with Time-Varying Delays and Parameter Uncertainties," Mathematics, MDPI, vol. 8(5), pages 1-19, May.
    3. Zou, Cong & Li, Bing & Liu, Feiyang & Xu, Bingrui, 2022. "Event-Triggered μ-state estimation for Markovian jumping neural networks with mixed time-delays," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    4. Sriraman, R. & Cao, Yang & Samidurai, R., 2020. "Global asymptotic stability of stochastic complex-valued neural networks with probabilistic time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 103-118.
    5. Duan, Wenyong & Li, Yan & Sun, Yi & Chen, Jian & Yang, Xiaodong, 2020. "Enhanced master–slave synchronization criteria for chaotic Lur’e systems based on time-delayed feedback control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 276-294.
    6. Zhao, Xin & Zeng, Zhijun, 2020. "Stationary distribution and extinction of a stochastic ratio-dependent predator–prey system with stage structure for the predator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    7. Duan, Lian & Shi, Min & Huang, Chuangxia & Fang, Xianwen, 2021. "Synchronization in finite-/fixed-time of delayed diffusive complex-valued neural networks with discontinuous activations," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    8. Yujuan Tian & Yuhan Yin & Fei Wang & Kening Wang, 2022. "Impulsive Control of Complex-Valued Neural Networks with Mixed Time Delays and Uncertainties," Mathematics, MDPI, vol. 10(3), pages 1-14, February.
    9. Fan, Hongguang & Shi, Kaibo & Zhao, Yi, 2022. "Global μ-synchronization for nonlinear complex networks with unbounded multiple time delays and uncertainties via impulsive control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suntonsinsoungvon, E. & Udpin, S., 2020. "Exponential stability of discrete-time uncertain neural networks with multiple time-varying leakage delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 233-245.
    2. Deng, Jie & Li, Hong-Li & Cao, Jinde & Hu, Cheng & Jiang, Haijun, 2023. "State estimation for discrete-time fractional-order neural networks with time-varying delays and uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    3. Panda, Sumati Kumari & Vijayakumar, Velusamy & Nagy, A.M., 2023. "Complex-valued neural networks with time delays in the Lp sense: Numerical simulations and finite time stability," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    4. Nagamani, G. & Ramasamy, S., 2016. "Stochastic dissipativity and passivity analysis for discrete-time neural networks with probabilistic time-varying delays in the leakage term," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 237-257.
    5. Tong, Liyun & Liu, Yang & Lou, Jungang & Lu, Jianquan & Alsaadi, Fuad E., 2018. "Static output feedback set stabilization for context-sensitive probabilistic Boolean control networks," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 263-275.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:156:y:2019:i:c:p:143-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.