IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v147y2018icp90-99.html
   My bibliography  Save this article

Denoising strategies for general finite frames

Author

Listed:
  • De Canditiis, D.
  • Pensky, M.
  • Wolfe, P.J.

Abstract

Overcomplete representations such as wavelets and windowed Fourier expansions have become mainstays of modern statistical data analysis. In the present work, in the context of general finite frames, we derive an oracle expression for the mean quadratic risk of a linear diagonal de-noising procedure which immediately yields the optimal linear diagonal estimator. Moreover, we obtain an expression for an unbiased estimator of the risk of any smooth shrinkage rule. This last result motivates a set of practical estimation procedures for general finite frames that can be viewed as the generalization of the classical procedures for orthonormal bases. A simulation study verifies the effectiveness of the proposed procedures with respect to the classical ones and confirms that the correlations induced by frame structure should be explicitly treated to yield an improvement in estimation precision.

Suggested Citation

  • De Canditiis, D. & Pensky, M. & Wolfe, P.J., 2018. "Denoising strategies for general finite frames," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 147(C), pages 90-99.
  • Handle: RePEc:eee:matcom:v:147:y:2018:i:c:p:90-99
    DOI: 10.1016/j.matcom.2017.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475417300599
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2017.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Canditiis, Daniela, 2014. "A frame based shrinkage procedure for fast oscillating functions," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 142-150.
    2. Patrick J. Wolfe & Simon J. Godsill & Wee‐Jing Ng, 2004. "Bayesian variable selection and regularization for time–frequency surface estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 575-589, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bin Jiang & Anastasios Panagiotelis & George Athanasopoulos & Rob Hyndman & Farshid Vahid, 2016. "Bayesian Rank Selection in Multivariate Regression," Monash Econometrics and Business Statistics Working Papers 6/16, Monash University, Department of Econometrics and Business Statistics.
    2. De Canditiis, Daniela, 2014. "A frame based shrinkage procedure for fast oscillating functions," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 142-150.
    3. Guy P. Nason & Ben Powell & Duncan Elliott & Paul A. Smith, 2017. "Should we sample a time series more frequently?: decision support via multirate spectrum estimation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 353-407, February.
    4. Panagiotelis, Anastasios & Smith, Michael, 2008. "Bayesian identification, selection and estimation of semiparametric functions in high-dimensional additive models," Journal of Econometrics, Elsevier, vol. 143(2), pages 291-316, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:147:y:2018:i:c:p:90-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.