IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v143y2018icp65-77.html
   My bibliography  Save this article

A Monte Carlo estimation of the mean residence time in cells surrounded by thin layers

Author

Listed:
  • Lejay, Antoine

Abstract

We present a new Monte Carlo method to estimate the mean-residence time of a diffusive particle in a domain surrounded by a thin layer of low diffusivity. Through a homogenization technique, the layer is identified with a membrane. The simulations use a stochastic process called the snapping out Brownian motion the density of which matches suitable transmission conditions at the membrane. We provide a benchmark test which is a simplified form of a real-life problem coming from brain imaging techniques. We also provide a new algorithm to adaptively estimate the exponential rate of the tail of the distribution function of the probability to be in the domain using Monte Carlo simulations.

Suggested Citation

  • Lejay, Antoine, 2018. "A Monte Carlo estimation of the mean residence time in cells surrounded by thin layers," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 143(C), pages 65-77.
  • Handle: RePEc:eee:matcom:v:143:y:2018:i:c:p:65-77
    DOI: 10.1016/j.matcom.2017.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475417302069
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2017.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lejay, Antoine & Maire, Sylvain, 2007. "Computing the principal eigenvalue of the Laplace operator by a stochastic method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 73(6), pages 351-363.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cameron Martin & Hongyuan Zhang & Julia Costacurta & Mihai Nica & Adam R Stinchcombe, 2022. "Solving Elliptic Equations with Brownian Motion: Bias Reduction and Temporal Difference Learning," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1603-1626, September.
    2. Deaconu, M. & Herrmann, S. & Maire, S., 2017. "The walk on moving spheres: A new tool for simulating Brownian motion’s exit time from a domain," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 135(C), pages 28-38.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:143:y:2018:i:c:p:65-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.