IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v143y2018icp215-225.html
   My bibliography  Save this article

Weak convergence of Galerkin approximations of stochastic partial differential equations driven by additive Lévy noise

Author

Listed:
  • Barth, Andrea
  • Stüwe, Tobias

Abstract

This work considers weak approximations of stochastic partial differential equations (SPDEs) driven by Lévy noise. The SPDEs at hand are parabolic with additive noise processes. A weak-convergence rate for the corresponding Galerkin Finite Element approximation is derived. The convergence result is derived by use of the Malliavin derivative rather than the common approach via the Kolmogorov backward equation.

Suggested Citation

  • Barth, Andrea & Stüwe, Tobias, 2018. "Weak convergence of Galerkin approximations of stochastic partial differential equations driven by additive Lévy noise," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 143(C), pages 215-225.
  • Handle: RePEc:eee:matcom:v:143:y:2018:i:c:p:215-225
    DOI: 10.1016/j.matcom.2017.03.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475417300836
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2017.03.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barth, Andrea & Lang, Annika, 2013. "Lp and almost sure convergence of a Milstein scheme for stochastic partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 123(5), pages 1563-1587.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Xu & Zhao, Weidong, 2018. "Finite element methods and their error analysis for SPDEs driven by Gaussian and non-Gaussian noises," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 58-75.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:143:y:2018:i:c:p:215-225. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.