IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v133y2017icp337-350.html
   My bibliography  Save this article

Universal approaches to approximate biological systems with nonstandard finite difference methods

Author

Listed:
  • Wood, Daniel T.
  • Kojouharov, Hristo V.
  • Dimitrov, Dobromir T.

Abstract

Nonstandard finite difference methods have been extensively used to numerically solve various problems in science and engineering. Most of those methods have been specifically designed to handle each problem separately and have been difficult to extend to other problems. In recent years, general nonstandard modeling approaches preserving key characteristics of autonomous dynamical systems have been proposed. In this paper, three of these numerical methods are presented and their performance is evaluated and compared in several different settings.

Suggested Citation

  • Wood, Daniel T. & Kojouharov, Hristo V. & Dimitrov, Dobromir T., 2017. "Universal approaches to approximate biological systems with nonstandard finite difference methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 133(C), pages 337-350.
  • Handle: RePEc:eee:matcom:v:133:y:2017:i:c:p:337-350
    DOI: 10.1016/j.matcom.2016.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475416300362
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2016.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitrov, Dobromir T. & Kojouharov, Hristo V., 2005. "Analysis and numerical simulation of phytoplankton–nutrient systems with nutrient loss," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 70(1), pages 33-43.
    2. Dimitrov, Dobromir T. & Kojouharov, Hristo V., 2008. "Nonstandard finite-difference methods for predator–prey models with general functional response," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(1), pages 1-11.
    3. Mickens, Ronald E., 2005. "A nonstandard finite difference scheme for a PDE modeling combustion with nonlinear advection and diffusion," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 69(5), pages 439-446.
    4. Mickens, Ronald E., 2007. "Determination of denominator functions for a NSFD scheme for the Fisher PDE with linear advection," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 74(2), pages 190-195.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Julio Mayorga & María Ángeles Castro & Antonio Sirvent & Francisco Rodríguez, 2023. "On the Construction of Exact Numerical Schemes for Linear Delay Models," Mathematics, MDPI, vol. 11(8), pages 1-9, April.
    2. Pasha, Syed Ahmed & Nawaz, Yasir & Arif, Muhammad Shoaib, 2023. "On the nonstandard finite difference method for reaction–diffusion models," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    3. Hoang, Manh Tuan, 2022. "Reliable approximations for a hepatitis B virus model by nonstandard numerical schemes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 32-56.
    4. Hoang, Manh Tuan, 2023. "Dynamical analysis of a generalized hepatitis B epidemic model and its dynamically consistent discrete model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 291-314.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Korkut, Sıla Ö. & Erdoğan, Utku, 2018. "Positivity preserving scheme based on exponential integrators," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 731-739.
    2. Abraham J. Arenas & Gilberto González-Parra & Jhon J. Naranjo & Myladis Cogollo & Nicolás De La Espriella, 2021. "Mathematical Analysis and Numerical Solution of a Model of HIV with a Discrete Time Delay," Mathematics, MDPI, vol. 9(3), pages 1-21, January.
    3. Pasha, Syed Ahmed & Nawaz, Yasir & Arif, Muhammad Shoaib, 2023. "On the nonstandard finite difference method for reaction–diffusion models," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    4. Mandel, Jan & Bennethum, Lynn S. & Beezley, Jonathan D. & Coen, Janice L. & Douglas, Craig C. & Kim, Minjeong & Vodacek, Anthony, 2008. "A wildland fire model with data assimilation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 584-606.
    5. Tuan Hoang, Manh & Nagy, A.M., 2019. "Uniform asymptotic stability of a Logistic model with feedback control of fractional order and nonstandard finite difference schemes," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 24-34.
    6. Joel Alba-Pérez & Jorge E. Macías-Díaz, 2019. "Analysis of Structure-Preserving Discrete Models for Predator-Prey Systems with Anomalous Diffusion," Mathematics, MDPI, vol. 7(12), pages 1-31, December.
    7. Vasily E. Tarasov, 2024. "Exact Finite-Difference Calculus: Beyond Set of Entire Functions," Mathematics, MDPI, vol. 12(7), pages 1-37, March.
    8. Hoang, Manh Tuan, 2022. "Positivity and boundedness preserving nonstandard finite difference schemes for solving Volterra’s population growth model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 199(C), pages 359-373.
    9. Dimitrov, Dobromir T. & Kojouharov, Hristo V., 2008. "Nonstandard finite-difference methods for predator–prey models with general functional response," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(1), pages 1-11.
    10. Jódar, Lucas & Villanueva, Rafael J. & Arenas, Abraham J. & González, Gilberto C., 2008. "Nonstandard numerical methods for a mathematical model for influenza disease," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 622-633.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:133:y:2017:i:c:p:337-350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.