IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v125y2016icp56-69.html
   My bibliography  Save this article

Numerical approximation of the non-essential spectrum of abstract delay differential equations

Author

Listed:
  • Vermiglio, Rossana

Abstract

delay differential equations (ADDEs) extend delay differential equations (DDEs) from finite to infinite dimension. They arise in many application fields. From a dynamical system point of view, the stability analysis of an equilibrium is the first relevant question, which can be reduced to the stability of the zero solution of the corresponding linearized system. In the understanding of the linear case, the essential and the non-essential spectra of the infinitesimal generator are crucial. We propose to extend the infinitesimal generator approach developed for linear DDEs to approximate the non-essential spectrum of linear ADDEs. We complete the paper with the numerical results for a homogeneous neural field model with transmission delay of a single population of neurons.

Suggested Citation

  • Vermiglio, Rossana, 2016. "Numerical approximation of the non-essential spectrum of abstract delay differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 125(C), pages 56-69.
  • Handle: RePEc:eee:matcom:v:125:y:2016:i:c:p:56-69
    DOI: 10.1016/j.matcom.2015.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475415002335
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2015.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:125:y:2016:i:c:p:56-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.