IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v122y2016icp20-34.html
   My bibliography  Save this article

A neurodynamic optimization technique based on overestimator and underestimator functions for solving a class of non-convex optimization problems

Author

Listed:
  • Hosseinipour-Mahani, N.
  • Malek, A.

Abstract

In this paper, a novel neural network model for solving non-convex quadratic optimization problem is proposed. It is proved that the equilibrium points of the neural network model coincides with the local and global optimal solutions of the constrained non-convex optimization problem. Furthermore, it is shown that under suitable assumptions this model is globally convergent and stable in the sense of Lyapunov at each equilibrium points. Moreover a sufficient global optimality for non-convex non-quadratic objective function subject to a quadratic constraint is presented based on the corresponding underestimator function. Then for solving a class of non-convex optimization problems a novel neurodynamic optimization technique based on the necessary and sufficient global optimality is proposed. Both theoretical and numerical approaches are considered. Numerical simulations for several different non-convex quadratic optimization problems are discussed to illustrate great agreement between the theoretical and numerical results. The efficiency of the proposed neural network model is illustrated by numerical simulations and comparisons with available literature models.

Suggested Citation

  • Hosseinipour-Mahani, N. & Malek, A., 2016. "A neurodynamic optimization technique based on overestimator and underestimator functions for solving a class of non-convex optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 122(C), pages 20-34.
  • Handle: RePEc:eee:matcom:v:122:y:2016:i:c:p:20-34
    DOI: 10.1016/j.matcom.2015.09.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847541500213X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2015.09.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yi, Chenfu & Zhang, Yunong & Guo, Dongsheng, 2013. "A new type of recurrent neural networks for real-time solution of Lyapunov equation with time-varying coefficient matrices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 92(C), pages 40-52.
    2. Yang, Yongqing & Cao, Jinde & Xu, Xianyun & Hu, Manfeng & Gao, Yun, 2014. "A new neural network for solving quadratic programming problems with equality and inequality constraints," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 101(C), pages 103-112.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Limin & Song, Qiankun, 2020. "Pricing policies for dual-channel supply chain with green investment and sales effort under uncertain demand," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 79-93.
    2. Bolin Liao & Cheng Hua & Xinwei Cao & Vasilios N. Katsikis & Shuai Li, 2022. "Complex Noise-Resistant Zeroing Neural Network for Computing Complex Time-Dependent Lyapunov Equation," Mathematics, MDPI, vol. 10(15), pages 1-17, August.
    3. Sha, Chunlin & Zhao, Hongyong, 2019. "A novel neurodynamic reaction-diffusion model for solving linear variational inequality problems and its application," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 57-75.
    4. Léon Faure & Bastien Mollet & Wolfram Liebermeister & Jean-Loup Faulon, 2023. "A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Raja, Muhammad Asif Zahoor & Samar, Raza & Manzar, Muhammad Anwar & Shah, Syed Muslim, 2017. "Design of unsupervised fractional neural network model optimized with interior point algorithm for solving Bagley–Torvik equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 132(C), pages 139-158.
    6. Zhang, Yunong & Zhai, Keke & Chen, Dechao & Jin, Long & Hu, Chaowei, 2016. "Challenging simulation practice (failure and success) on implicit tracking control of double-integrator system via Zhang-gradient method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 120(C), pages 104-119.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:122:y:2016:i:c:p:20-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.