IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v109y2015icp46-63.html
   My bibliography  Save this article

Knowledge reduction in formal contexts using non-negative matrix factorization

Author

Listed:
  • Ch., Aswani Kumar
  • Dias, Sérgio M.
  • Vieira, Newton J.

Abstract

Formal Concept Analysis (FCA) is a mathematical framework that offers conceptual data analysis and knowledge discovery. One of the main issues of knowledge discovery is knowledge reduction. The objective of this paper is to investigate the knowledge reduction in FCA and propose a method based on Non-Negative Matrix Factorization (NMF) for addressing the issue. Experiments on real world and benchmark datasets offer the evidence for the performance of the proposed method.

Suggested Citation

  • Ch., Aswani Kumar & Dias, Sérgio M. & Vieira, Newton J., 2015. "Knowledge reduction in formal contexts using non-negative matrix factorization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 109(C), pages 46-63.
  • Handle: RePEc:eee:matcom:v:109:y:2015:i:c:p:46-63
    DOI: 10.1016/j.matcom.2014.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475414001992
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2014.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerd Stumme, 2009. "Formal Concept Analysis," International Handbooks on Information Systems, in: Steffen Staab & Rudi Studer (ed.), Handbook on Ontologies, pages 177-199, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aswani Kumar Cherukuri & Radhika Shivhare & Ajith Abraham & Jinhai Li & Annapurna Jonnalagadda, 2021. "A Pragmatic Approach to Understand Hebbian Cell Assembly," International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), IGI Global, vol. 15(2), pages 60-82, April.
    2. Raghavendra K. Chunduri & Aswani Kumar Cherukuri, 2018. "HaLoop Approach for Concept Generation in Formal Concept Analysis," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 1-24, September.
    3. Aswani Kumar Cherukuri & Radhika Shivhare & Ajith Abraham & Jinhai Li & Annapurna Jonnalagadda, 2021. "A Pragmatic Approach to Understand Hebbian Cell Assembly," International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), IGI Global, vol. 15(2), pages 73-95, April.
    4. Singh, Prem Kumar, 2018. "Complex neutrosophic concept lattice and its applications to air quality analysis," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 206-213.
    5. Won Keun Min, 2020. "Attribute Reduction in Soft Contexts Based on Soft Sets and Its Application to Formal Contexts," Mathematics, MDPI, vol. 8(5), pages 1-12, May.
    6. Singh, Prem Kumar, 2017. "Complex vague set based concept lattice," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 145-153.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:109:y:2015:i:c:p:46-63. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.