IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v150y2025ics0264837724004186.html
   My bibliography  Save this article

Spatially explicit multi-objective optimization tool for green infrastructure planning based on InVEST and NSGA-II towards multifunctionality

Author

Listed:
  • Dong, Yuxiang
  • Liu, Song
  • Pei, Xinsheng
  • Wang, Ying

Abstract

The imperatives of sustainable urban development have propelled the prominence of green infrastructure (GI) as a viable solution. However, prevailing methodologies for GI planning often prioritize individual ecosystem services (ES) and lack spatially explicit guidance. This study presents a spatially explicit approach integrating the InVEST model and the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) algorithm as a multi-objective spatial optimization tool for assisting decision-making in multifunctional GI planning. The spatially explicit InVEST model was used as a model to assess GI multifunctionality. To demonstrate the applicability of our proposed model, GI of the central area of Wuhu City are optimized with the aim of maximizing the 3 objectives of maximizing habitat quality, crop production, and runoff reduction, evaluated respectively by InVEST habitat quality model, crop production model, and urban flood risk mitigation model. The comparison of typical optimized GI planning schemes—including the compromise, habitat quality preference, runoff reduction preference, and crop production preference scenarios—with the current scenario demonstrates significant improvements in corresponding ES objective. Our findings suggest that increasing forest land, certain types of arable land, and green spaces may have a higher probability of enhancing the multifunctionality of the site. Allocating GI elements in highly built-up areas may efficiently enhance multifunctionality. Spatial analysis of optimal GI schemes reveals a preference for dispersing forest land and grassland, while aggregating agricultural GIs to enhance multifunctionality. Non-linear relationships are found between the ES pair of crop production and habitat quality, as well as runoff reduction and habitat quality. Identifying inflection points where synergies and trade-offs shift is essential for maximizing multifunctionality. Trade-off relationships between crop production & runoff reduction are identified. Our study highlights the importance of recognizing non-linear relationships between certain ES pairs in GI planning, particularly identifying inflection points where synergies and trade-offs shift. This research underscores the viability of our proposed model in facilitating informed decision-making pertaining to GI planning on a citywide scale, with a specific emphasis on achieving multifunctionality. By addressing the shortcomings of current approaches and integrating advanced optimization techniques, our model offers valuable insights for policymakers and practitioners involved in sustainable urban development and GI planning.

Suggested Citation

  • Dong, Yuxiang & Liu, Song & Pei, Xinsheng & Wang, Ying, 2025. "Spatially explicit multi-objective optimization tool for green infrastructure planning based on InVEST and NSGA-II towards multifunctionality," Land Use Policy, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:lauspo:v:150:y:2025:i:c:s0264837724004186
    DOI: 10.1016/j.landusepol.2024.107465
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837724004186
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2024.107465?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:150:y:2025:i:c:s0264837724004186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.