IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v148y2025ics0264837724003715.html
   My bibliography  Save this article

Multi-scenario simulation of low-carbon land use based on the SD-FLUS model in Changsha, China

Author

Listed:
  • Ma, Shenglan
  • Huang, Junlin
  • Wang, Xiuxiu
  • Fu, Ying

Abstract

The significance of land use in relation to carbon emissions cannot be overstated. Consequently, enhancing the structure of land use can concurrently decrease carbon emissions and improve land utilization efficiency. However, the majority of studies have primarily concentrated on static linear planning analysis, overlooking how land use spatial structure affects carbon emissions. There is still relatively limited research on the integrated simulation and optimization of land use, considering both low-carbon objectives and economic benefits. This study focuses on Changsha, simulating land use change and net carbon emissions coupling the SD (system dynamics) model with the FLUS (future land use simulation) model in three different scenarios, namely, Baseline Development (BD), Rapid Economic Development (RED), Coordinated Development (CD). The following are the key findings. Firstly, the integrated model demonstrates precision in predicting land use demands, patterns, and net carbon emissions. Secondly, land use demands in three different scenarios have a similar changing tendency by 2030. Farmland, grassland, and water areas are decreasing, while forestland, unused land, and built-up land are expanding at different rates. The land use patterns in the CD scenario are the most desirable compare to the other scenarios. The growth rate of built-up land has slowed down and is distributed in a compact manner, while the growth of forest land is faster and has a contiguous layout. The overall degree of landscape fragmentation has decreased, and different land types are distributed in a more balanced manner. This has led to a gradual decrease in net carbon emissions after reaching a peak in 2021, with a reduction of 2.43 million tons compared to 2020. According to these findings, the government should adjust land use structure while optimizing the economic development model to minimize carbon emissions, which enables us to provide a planning strategy for land use and sustainable development of China's major cities.

Suggested Citation

  • Ma, Shenglan & Huang, Junlin & Wang, Xiuxiu & Fu, Ying, 2025. "Multi-scenario simulation of low-carbon land use based on the SD-FLUS model in Changsha, China," Land Use Policy, Elsevier, vol. 148(C).
  • Handle: RePEc:eee:lauspo:v:148:y:2025:i:c:s0264837724003715
    DOI: 10.1016/j.landusepol.2024.107418
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837724003715
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2024.107418?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:148:y:2025:i:c:s0264837724003715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.