IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v113y2022ics0264837721006220.html
   My bibliography  Save this article

Revealing the solar energy potential by integration of GIS and AHP in order to compare decisions of the land use on the environmental plans

Author

Listed:
  • Coruhlu, Yakup Emre
  • Solgun, Necmettin
  • Baser, Volkan
  • Terzi, Fatih

Abstract

Due to the depletion of fossil fuel resources, interest in renewable energy sources is steadily increasing in the world. Turkey, is very rich in terms of its solar energy potential enabling it to use the sun as a means of generating energy. Thanks to marginal lands such as non-residential areas, agricultural areas and industrial areas, electricity production is provided by means of renewable energy sources. Since land is a scarce resource, optimal use of it is a spatial necessity. In developed societies its usage is determined in the environmental plan based on criteria related to industry, agriculture etc. and presented to decision makers for their approval. However, in these plans, natural energy potentials such as the sun and wind can often be ignored. This lack of planning hinders the effective utilization of the solar energy potential. A case study has been carried out to better understand this issue. The most commonly used Solar Power Plant criteria have been determined with the literature review, an informal interview with SPP experts and the authors’ experiences and these criteria have been weighted with the Analytical Hierarchy Process method. A cost-surface map has been produced for the study area and the environmental plan has been associated with it. It has been determined that areas that have a very high solar energy potential in the cost-surface map have been planned for urban, commercial or different purposes in the environmental plans. In spite of the fact that the solar energy potential atlas shows the same solar potential for the study area, there are still huge differences in terms of solar energy potential among some regions in the study area. For this reason, it is not logical to build SPP facilities based only on the solar energy potential atlas. It is suggested to determine natural energy potential spatially throughout the country and consider it before the environmental plans are prepared. In addition, those wanting to research this subject are recommended to conduct studies in areas promoting alternative methods according to alternative site selection criteria including geographical and soil characteristics.

Suggested Citation

  • Coruhlu, Yakup Emre & Solgun, Necmettin & Baser, Volkan & Terzi, Fatih, 2022. "Revealing the solar energy potential by integration of GIS and AHP in order to compare decisions of the land use on the environmental plans," Land Use Policy, Elsevier, vol. 113(C).
  • Handle: RePEc:eee:lauspo:v:113:y:2022:i:c:s0264837721006220
    DOI: 10.1016/j.landusepol.2021.105899
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837721006220
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2021.105899?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ozdemir, Mujgan S. & Saaty, Thomas L., 2006. "The unknown in decision making: What to do about it," European Journal of Operational Research, Elsevier, vol. 174(1), pages 349-359, October.
    2. Coruhlu, Yakup Emre & Uzun, Bayram & Yildiz, Okan, 2020. "Zoning plan-based legal confiscation without expropriation in Turkey in light of ECHR decisions," Land Use Policy, Elsevier, vol. 95(C).
    3. Sánchez-Lozano, Juan M. & Teruel-Solano, Jerónimo & Soto-Elvira, Pedro L. & Socorro García-Cascales, M., 2013. "Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 544-556.
    4. Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2017. "Investigation of feasibility study of solar farms deployment using hybrid AHP-TOPSIS analysis: Case study of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 496-511.
    5. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    6. Alami Merrouni, Ahmed & Elwali Elalaoui, Fakhreddine & Mezrhab, Ahmed & Mezrhab, Abdelhamid & Ghennioui, Abdellatif, 2018. "Large scale PV sites selection by combining GIS and Analytical Hierarchy Process. Case study: Eastern Morocco," Renewable Energy, Elsevier, vol. 119(C), pages 863-873.
    7. Jangwon Suh & Jeffrey R. S. Brownson, 2016. "Solar Farm Suitability Using Geographic Information System Fuzzy Sets and Analytic Hierarchy Processes: Case Study of Ulleung Island, Korea," Energies, MDPI, vol. 9(8), pages 1-24, August.
    8. Jun, Dong & Tian-tian, Feng & Yi-sheng, Yang & Yu, Ma, 2014. "Macro-site selection of wind/solar hybrid power station based on ELECTRE-II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 194-204.
    9. Colak, H. Ebru & Memisoglu, Tugba & Gercek, Yasin, 2020. "Optimal site selection for solar photovoltaic (PV) power plants using GIS and AHP: A case study of Malatya Province, Turkey," Renewable Energy, Elsevier, vol. 149(C), pages 565-576.
    10. Johansson, Tim & Olofsson, Thomas & Mangold, Mikael, 2017. "Development of an energy atlas for renovation of the multifamily building stock in Sweden," Applied Energy, Elsevier, vol. 203(C), pages 723-736.
    11. Al Garni, Hassan Z. & Awasthi, Anjali, 2017. "Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia," Applied Energy, Elsevier, vol. 206(C), pages 1225-1240.
    12. Amy H. I. Lee & He-Yau Kang & You-Jyun Liou, 2017. "A Hybrid Multiple-Criteria Decision-Making Approach for Photovoltaic Solar Plant Location Selection," Sustainability, MDPI, vol. 9(2), pages 1-21, January.
    13. Hossein Yousefi & Hamed Hafeznia & Amin Yousefi-Sahzabi, 2018. "Spatial Site Selection for Solar Power Plants Using a GIS-Based Boolean-Fuzzy Logic Model: A Case Study of Markazi Province, Iran," Energies, MDPI, vol. 11(7), pages 1-18, June.
    14. Ehsan Noorollahi & Dawud Fadai & Mohsen Akbarpour Shirazi & Seyed Hassan Ghodsipour, 2016. "Land Suitability Analysis for Solar Farms Exploitation Using GIS and Fuzzy Analytic Hierarchy Process (FAHP)—A Case Study of Iran," Energies, MDPI, vol. 9(8), pages 1-24, August.
    15. A. P. Vavatsikos & O. E. Demesouka & K. P. Anagnostopoulos, 2020. "GIS-based suitability analysis using fuzzy PROMETHEE," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 63(4), pages 604-628, March.
    16. Ali, Shahid & Taweekun, Juntakan & Techato, Kuaanan & Waewsak, Jompob & Gyawali, Saroj, 2019. "GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand," Renewable Energy, Elsevier, vol. 132(C), pages 1360-1372.
    17. Giamalaki, Marina & Tsoutsos, Theocharis, 2019. "Sustainable siting of solar power installations in Mediterranean using a GIS/AHP approach," Renewable Energy, Elsevier, vol. 141(C), pages 64-75.
    18. Yìldiz, Okan & Coruhlu, Yakup Emre & Biyik, Cemal, 2018. "Registration of agricultural areas towards the development of a future Turkish cadastral system," Land Use Policy, Elsevier, vol. 78(C), pages 207-218.
    19. BumChoong Kim & Juhan Kim & Jinsoo Kim, 2019. "Evaluation Model for Investment in Solar Photovoltaic Power Generation Using Fuzzy Analytic Hierarchy Process," Sustainability, MDPI, vol. 11(10), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hasan Huseyin Coban, 2023. "Hydropower Planning in Combination with Batteries and Solar Energy," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    2. Changchang Liu & Chuxiong Deng & Zhongwu Li & Yaojun Liu & Shuyuan Wang, 2022. "Optimization of Spatial Pattern of Land Use: Progress, Frontiers, and Prospects," IJERPH, MDPI, vol. 19(10), pages 1-22, May.
    3. Ali, Shahid & Stewart, Rodney A. & Sahin, Oz & Vieira, Abel Silva, 2023. "Integrated GIS-AHP-based approach for off-river pumped hydro energy storage site selection," Applied Energy, Elsevier, vol. 337(C).
    4. Zhixin Li & Chen Zhang & Zejun Yu & Hong Zhang & Haihua Jiang, 2023. "Deep Learning Method for Evaluating Photovoltaic Potential of Rural Land Use Types," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    5. Kocabaldır, Canan & Yücel, Mehmet Ali, 2023. "GIS-based multicriteria decision analysis for spatial planning of solar photovoltaic power plants in Çanakkale province, Turkey," Renewable Energy, Elsevier, vol. 212(C), pages 455-467.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    2. Noorollahi, Younes & Ghenaatpisheh Senani, Ali & Fadaei, Ahmad & Simaee, Mobina & Moltames, Rahim, 2022. "A framework for GIS-based site selection and technical potential evaluation of PV solar farm using Fuzzy-Boolean logic and AHP multi-criteria decision-making approach," Renewable Energy, Elsevier, vol. 186(C), pages 89-104.
    3. Dimitra G. Vagiona, 2021. "Comparative Multicriteria Analysis Methods for Ranking Sites for Solar Farm Deployment: A Case Study in Greece," Energies, MDPI, vol. 14(24), pages 1-23, December.
    4. Li, Xiao-Ya & Dong, Xin-Yu & Chen, Sha & Ye, Yan-Mei, 2024. "The promising future of developing large-scale PV solar farms in China: A three-stage framework for site selection," Renewable Energy, Elsevier, vol. 220(C).
    5. Shao, Meng & Zhao, Yuanxu & Sun, Jinwei & Han, Zhixin & Shao, Zhuxiao, 2023. "A decision framework for tidal current power plant site selection based on GIS-MCDM: A case study in China," Energy, Elsevier, vol. 262(PB).
    6. Günen, Mehmet Akif, 2021. "A comprehensive framework based on GIS-AHP for the installation of solar PV farms in Kahramanmaraş, Turkey," Renewable Energy, Elsevier, vol. 178(C), pages 212-225.
    7. Zhang, Zhengjia & Wang, Qingxiang & Liu, Zhengguang & Chen, Qi & Guo, Zhiling & Zhang, Haoran, 2023. "Renew mineral resource-based cities: Assessment of PV potential in coal mining subsidence areas," Applied Energy, Elsevier, vol. 329(C).
    8. Sofia Spyridonidou & Georgia Sismani & Eva Loukogeorgaki & Dimitra G. Vagiona & Hagit Ulanovsky & Daniel Madar, 2021. "Sustainable Spatial Energy Planning of Large-Scale Wind and PV Farms in Israel: A Collaborative and Participatory Planning Approach," Energies, MDPI, vol. 14(3), pages 1-23, January.
    9. BumChoong Kim & Juhan Kim & Jinsoo Kim, 2019. "Evaluation Model for Investment in Solar Photovoltaic Power Generation Using Fuzzy Analytic Hierarchy Process," Sustainability, MDPI, vol. 11(10), pages 1-23, May.
    10. Fakharizadehshirazi, Elham & Rösch, Christine, 2024. "A novel socio-techno-environmental GIS approach to assess the contribution of ground-mounted photovoltaics to achieve climate neutrality in Germany," Renewable Energy, Elsevier, vol. 227(C).
    11. Tercan, Emre & Eymen, Abdurrahman & Urfalı, Tuğrul & Saracoglu, Burak Omer, 2021. "A sustainable framework for spatial planning of photovoltaic solar farms using GIS and multi-criteria assessment approach in Central Anatolia, Turkey," Land Use Policy, Elsevier, vol. 102(C).
    12. Sultan Al-Shammari & Wonsuk Ko & Essam A. Al Ammar & Majed A. Alotaibi & Hyeong-Jin Choi, 2021. "Optimal Decision-Making in Photovoltaic System Selection in Saudi Arabia," Energies, MDPI, vol. 14(2), pages 1-18, January.
    13. Besharati Fard, Moein & Moradian, Parisa & Emarati, Mohammadreza & Ebadi, Mehdi & Gholamzadeh Chofreh, Abdoulmohammad & Klemeŝ, Jiří Jaromír, 2022. "Ground-mounted photovoltaic power station site selection and economic analysis based on a hybrid fuzzy best-worst method and geographic information system: A case study Guilan province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    14. Zambrano-Asanza, S. & Quiros-Tortos, J. & Franco, John F., 2021. "Optimal site selection for photovoltaic power plants using a GIS-based multi-criteria decision making and spatial overlay with electric load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    15. Elkadeem, Mohamed R. & Younes, Ali & Mazzeo, Domenico & Jurasz, Jakub & Elia Campana, Pietro & Sharshir, Swellam W. & Alaam, Mohamed A., 2022. "Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment," Applied Energy, Elsevier, vol. 322(C).
    16. Elkadeem, M.R. & Younes, Ali & Sharshir, Swellam W. & Campana, Pietro Elia & Wang, Shaorong, 2021. "Sustainable siting and design optimization of hybrid renewable energy system: A geospatial multi-criteria analysis," Applied Energy, Elsevier, vol. 295(C).
    17. Lindberg, O. & Birging, A. & Widén, J. & Lingfors, D., 2021. "PV park site selection for utility-scale solar guides combining GIS and power flow analysis: A case study on a Swedish municipality," Applied Energy, Elsevier, vol. 282(PA).
    18. Jesús A. Prieto-Amparán & Alfredo Pinedo-Alvarez & Carlos R. Morales-Nieto & María C. Valles-Aragón & Alan Álvarez-Holguín & Federico Villarreal-Guerrero, 2021. "A Regional GIS-Assisted Multi-Criteria Evaluation of Site-Suitability for the Development of Solar Farms," Land, MDPI, vol. 10(2), pages 1-19, February.
    19. Meng Shao & Shulei Zhang & Jinwei Sun & Zhixin Han & Zhuxiao Shao & Chuanxiu Yi, 2022. "GIS-MCDM-Based Approach to Site Selection of Wave Power Plants for Islands in China," Energies, MDPI, vol. 15(11), pages 1-24, June.
    20. Katkar, Venktesh V. & Sward, Jeffrey A. & Worsley, Alex & Zhang, K. Max, 2021. "Strategic land use analysis for solar energy development in New York State," Renewable Energy, Elsevier, vol. 173(C), pages 861-875.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:113:y:2022:i:c:s0264837721006220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.