IDEAS home Printed from https://ideas.repec.org/a/eee/juipol/v86y2024ics0957178723002187.html
   My bibliography  Save this article

Measuring the eco-efficiency of municipal solid waste service: A fuzzy DEA model for handling missing data

Author

Listed:
  • lo Storto, Corrado

Abstract

In the last decades, evaluating the performance of municipal solid waste (MSW) service has attracted the interest of scholars and policymakers worldwide. This study adopts a generalized directional distance function (GDDF) data envelopment analysis (DEA) model to measure the eco-efficiency of 94 Apulian municipalities providing MSW service over 2019–2021. The model uses the α-cut method to handle missing data in a fuzzy DEA environment. During the period covered by the research, on average, the MSW eco-efficiency was between 0.825 and 0.879. The MSW separate collection rate is the only factor significantly affecting the MSW eco-efficiency.

Suggested Citation

  • lo Storto, Corrado, 2024. "Measuring the eco-efficiency of municipal solid waste service: A fuzzy DEA model for handling missing data," Utilities Policy, Elsevier, vol. 86(C).
  • Handle: RePEc:eee:juipol:v:86:y:2024:i:c:s0957178723002187
    DOI: 10.1016/j.jup.2023.101706
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0957178723002187
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jup.2023.101706?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Gang & Zervopoulos, Panagiotis D., 2014. "Estimating the technical efficiency of health care systems: A cross-country comparison using the directional distance function," European Journal of Operational Research, Elsevier, vol. 238(3), pages 899-910.
    2. Pérez-López, Gemma & Prior, Diego & Zafra-Gómez, José L., 2018. "Temporal scale efficiency in DEA panel data estimations. An application to the solid waste disposal service in Spain," Omega, Elsevier, vol. 76(C), pages 18-27.
    3. Paula Llanquileo-Melgarejo & María Molinos-Senante & Giulia Romano & Laura Carosi, 2021. "Evaluation of the Impact of Separative Collection and Recycling of Municipal Solid Waste on Performance: An Empirical Application for Chile," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    4. Daniel J. Henderson & Valentin Zelenyuk, 2007. "Testing for (Efficiency) Catching‐up," Southern Economic Journal, John Wiley & Sons, vol. 73(4), pages 1003-1019, April.
    5. Di Foggia, Giacomo & Beccarello, Massimo, 2018. "Improving efficiency in the MSW collection and disposal service combining price cap and yardstick regulation: The Italian case," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 79, pages 223-231.
    6. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    7. Halkos, George & Petrou, Kleoniki Natalia, 2019. "Treating undesirable outputs in DEA: A critical review," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 97-104.
    8. Romano, Giulia & Molinos-Senante, María & Carosi, Laura & Llanquileo-Melgarejo, Paula & Sala-Garrido, Ramón & Mocholi-Arce, Manuel, 2021. "Assessing the dynamic eco-efficiency of Italian municipalities by accounting for the ownership of the entrusted waste utilities," Utilities Policy, Elsevier, vol. 73(C).
    9. Manuel Mocholi-Arce & Trinidad Gómez & Maria Molinos-Senante & Ramon Sala-Garrido & Rafael Caballero, 2020. "Evaluating the Eco-Efficiency of Wastewater Treatment Plants: Comparison of Optimistic and Pessimistic Approaches," Sustainability, MDPI, vol. 12(24), pages 1-13, December.
    10. Ruud, Paul A., 1991. "Extensions of estimation methods using the EM algorithm," Journal of Econometrics, Elsevier, vol. 49(3), pages 305-341, September.
    11. Zhu, Joe, 2003. "Imprecise data envelopment analysis (IDEA): A review and improvement with an application," European Journal of Operational Research, Elsevier, vol. 144(3), pages 513-529, February.
    12. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
    13. J J Cordeiro & J Sarkis & D Vazquez-Brust & L Frater & J Dijkshoorn, 2012. "An evaluation of technical efficiency and managerial correlates of solid waste management by Welsh SMEs using parametric and non-parametric techniques," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(5), pages 653-664, May.
    14. Chunhua Chen & Jianwei Ren & Lijun Tang & Haohua Liu, 2020. "Additive integer-valued data envelopment analysis with missing data: A multi-criteria evaluation approach," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-20, June.
    15. T Kuosmanen, 2009. "Data envelopment analysis with missing data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1767-1774, December.
    16. W. Liu & W. Meng & X. Li & D. Zhang, 2010. "DEA models with undesirable inputs and outputs," Annals of Operations Research, Springer, vol. 173(1), pages 177-194, January.
    17. Llanquileo-Melgarejo, Paula & Molinos-Senante, María, 2022. "Assessing eco-productivity change in Chilean municipal solid waste services," Utilities Policy, Elsevier, vol. 78(C).
    18. Lombrano, Alessandro, 2009. "Cost efficiency in the management of solid urban waste," Resources, Conservation & Recycling, Elsevier, vol. 53(11), pages 601-611.
    19. C Kao & S-Tai Liu, 2000. "Data envelopment analysis with missing data: an application to University libraries in Taiwan," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(8), pages 897-905, August.
    20. Golany, B & Roll, Y, 1989. "An application procedure for DEA," Omega, Elsevier, vol. 17(3), pages 237-250.
    21. Timo Kuosmanen & Andrew Johnson & Antti Saastamoinen, 2015. "Stochastic Nonparametric Approach to Efficiency Analysis: A Unified Framework," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 7, pages 191-244, Springer.
    22. E. Dijkgraaf & R. Gradus, 2003. "Cost Savings of Contracting Out Refuse Collection," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 30(2), pages 149-161, June.
    23. Corrado lo Storto, 2021. "Eco-Productivity Analysis of the Municipal Solid Waste Service in the Apulia Region from 2010 to 2017," Sustainability, MDPI, vol. 13(21), pages 1-21, October.
    24. Simões, Pedro & Carvalho, Pedro & Marques, Rui Cunha, 2012. "Performance assessment of refuse collection services using robust efficiency measures," Resources, Conservation & Recycling, Elsevier, vol. 67(C), pages 56-66.
    25. EMROUZNEJAD, Ali & TAVANA, Madjid & HATAMI-MARBINI, Adel, 2014. "The state of the art in fuzzy data envelopment analysis," LIDAM Reprints CORE 2543, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    26. Entani, Tomoe & Maeda, Yutaka & Tanaka, Hideo, 2002. "Dual models of interval DEA and its extension to interval data," European Journal of Operational Research, Elsevier, vol. 136(1), pages 32-45, January.
    27. Dyckhoff, H. & Allen, K., 2001. "Measuring ecological efficiency with data envelopment analysis (DEA)," European Journal of Operational Research, Elsevier, vol. 132(2), pages 312-325, July.
    28. Sadjadi, S.J. & Omrani, H., 2008. "Data envelopment analysis with uncertain data: An application for Iranian electricity distribution companies," Energy Policy, Elsevier, vol. 36(11), pages 4247-4254, November.
    29. Kristof Witte & Rui Marques, 2010. "Influential observations in frontier models, a robust non-oriented approach to the water sector," Annals of Operations Research, Springer, vol. 181(1), pages 377-392, December.
    30. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    31. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    2. Pyoungsoo Lee, 2022. "Ranking Decision Making for Eco-Efficiency Using Operational, Energy, and Environmental Efficiency," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    3. Qingxian An & Xiangyang Tao & Bo Dai & Jinlin Li, 2020. "Modified Distance Friction Minimization Model with Undesirable Output: An Application to the Environmental Efficiency of China’s Regional Industry," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1047-1071, April.
    4. Corrado lo Storto, 2021. "Eco-Productivity Analysis of the Municipal Solid Waste Service in the Apulia Region from 2010 to 2017," Sustainability, MDPI, vol. 13(21), pages 1-21, October.
    5. Fusco, Elisa & Vidoli, Francesco & Rogge, Nicky, 2020. "Spatial directional robust Benefit of the Doubt approach in presence of undesirable output: An application to Italian waste sector," Omega, Elsevier, vol. 94(C).
    6. Toloo, Mehdi & Mensah, Emmanuel Kwasi & Salahi, Maziar, 2022. "Robust optimization and its duality in data envelopment analysis," Omega, Elsevier, vol. 108(C).
    7. Pyoungsoo Lee & You-Jin Park, 2017. "Eco-Efficiency Evaluation Considering Environmental Stringency," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    8. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    9. Falavigna, G. & Ippoliti, R., 2020. "The socio-economic planning of a community nurses programme in mountain areas: A Directional Distance Function approach," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    10. Arabmaldar, Aliasghar & Sahoo, Biresh K. & Ghiyasi, Mojtaba, 2023. "A generalized robust data envelopment analysis model based on directional distance function," European Journal of Operational Research, Elsevier, vol. 311(2), pages 617-632.
    11. Halkos, George & Petrou, Kleoniki Natalia, 2018. "A critical review of the main methods to treat undesirable outputs in DEA," MPRA Paper 90374, University Library of Munich, Germany.
    12. Tsolas, Ioannis E., 2011. "Performance assessment of mining operations using nonparametric production analysis: A bootstrapping approach in DEA," Resources Policy, Elsevier, vol. 36(2), pages 159-167, June.
    13. Rafael Benítez & Vicente Coll-Serrano & Vicente J. Bolós, 2021. "deaR-Shiny: An Interactive Web App for Data Envelopment Analysis," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    14. Jolly Puri & Shiv Prasad Yadav, 2017. "Improved DEA models in the presence of undesirable outputs and imprecise data: an application to banking industry in India," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1608-1629, November.
    15. Song, Malin & An, Qingxian & Zhang, Wei & Wang, Zeya & Wu, Jie, 2012. "Environmental efficiency evaluation based on data envelopment analysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4465-4469.
    16. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    17. Richard Simper & Maximilian J.B. Hall & Wenbin B. Liu & Valentin Zelenyuk & Zhongbao Zhou, 2014. "How Relevant is the Choice of Risk Management Control Variable to Non-parametric Bank Profit Efficiency Analysis?," CEPA Working Papers Series WP122014, School of Economics, University of Queensland, Australia.
    18. Shabani, Amir & Visani, Franco & Barbieri, Paolo & Dullaert, Wout & Vigo, Daniele, 2019. "Reliable estimation of suppliers’ total cost of ownership: An imprecise data envelopment analysis model with common weights," Omega, Elsevier, vol. 87(C), pages 57-70.
    19. Adel Hatami-Marbini & Per J. Agrell & Hirofumi Fukuyama & Kobra Gholami & Pegah Khoshnevis, 2017. "The role of multiplier bounds in fuzzy data envelopment analysis," Annals of Operations Research, Springer, vol. 250(1), pages 249-276, March.
    20. Wu, Jie & An, Qingxian & Xiong, Beibei & Chen, Ya, 2013. "Congestion measurement for regional industries in China: A data envelopment analysis approach with undesirable outputs," Energy Policy, Elsevier, vol. 57(C), pages 7-13.

    More about this item

    Keywords

    Fuzzy DEA; Eco-efficiency; Waste management;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juipol:v:86:y:2024:i:c:s0957178723002187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/utilities-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.